
VIRUS BULLETIN www.virusbtn.com

1FEBRUARY 2015

Covering the
global threat landscape

SCRIPT IN A LOSSY STREAM
Dénes Óvári
CSIS, Denmark

Some years ago, developers of exploit kits began to use
malformed PDF fi les as attack vectors for malicious
drive-by downloads, usually by exploiting vulnerabilities
present in viewer applications. Detections were duly added to
AV products and as a result, the generated PDF fi les became
increasingly obfuscated as malware attempted to circumvent
the scanners.

Typically, advantage was taken of the wide range of fi lters
that are provided by the PDF specifi cation for streams
in a document. Besides the various text encodings and
common data compressors such as Defl ate and LZW, even
image compressors such as CCITTFaxDecode [1] and
JBIG2Decode [2] were seen storing payloads in the wild – all
due to the fact that a binary stream can usually be interpreted
as raw image data.

LOSSY IMAGE COMPRESSORS IN PDF

Consequently, scanners were upgraded to handle the
compression of streams in PDF fi les. However, mainly for
performance reasons, certain assumptions had to be made
about the fi lters. For example, streams compressed using
lossy compressors like JPXDecode and DCTDecode (which
is a JPEG-compatible fi lter) are skipped by scanners and
even by popular PDF forensics tools – indicating that their
use for the storage of malicious payloads has been deemed
impossible by their developers.

In a presentation about PDF heuristics [3], the presence
of DCTDecode streams in a document was said to be
indicative of a clean fi le. This was with good reason, of
course – the PDF specifi cation states that the uncompressed
data would only be an approximation of the original data
[4], implying exclusive use of the fi lter for photograph-like
images.

DELVING INTO JPEG

But is that really the case? JPEG compression has a couple
of options, and likewise the PDF specifi cation contains a
handful of ways to determine how the decompressed data
should be interpreted.

Briefl y: after optionally downsampling some of the
components, the baseline JPEG splits the image data into 8x8
pixel blocks (MCUs). The original unsigned values are scaled
to signed values by subtracting 128 (see MCU number 1
with sample image data in Figure 1). Afterwards, the data is
transformed to the frequency domain by means of a two-
dimensional discrete cosine transform (see Figure 1).

The results from DCT (called coeffi cients) are divided with a
quality factor (q

f
) dependent quantization matrix (see Figure

2). Rounding of the results leads to the dropping of certain
high-frequency components of the image (see Figure 2) – and
that is the stage at which most of the data loss occurs. Finally,
all of the processed data is losslessly compressed using a
form of Huffman coding.

Figure 2: The coeffi cients are divided with a quality factor
dependent quantization matrix (3); rounding of the results

leads to the dropping of certain high-frequency components
of the image (4).

Decompression is performed backwards: in a nutshell, the data
is multiplied with the quantization table, an inverse DCT is
performed, and the values are shifted back to the 0–255 range.

At high q
f
 settings, with fl oating-point precision DCT

calculation, it would be possible to store and retrieve raw
RGB data losslessly, using software like GIMP, for example.
However, JPEG implementations differ – quantization tables

Figure 1: (1) MCU with sample image data; (2) data is transformed by means of a two-dimensional discrete cosine transform.

VIRUS BULLETIN www.virusbtn.com

FEBRUARY 20152

and certain stages of decompression are entirely up to the
developer, therefore the output might be different when the
stream is decompressed with another library.

In the most popular PDF reader application, Acrobat
Reader, we can see that Adobe’s JPEG implementation
could alter some samples in the LSB +/- 1 range [5]. This is
completely reasonable for image reproduction and conforms
to the JPEG specifi cation, while making the misuse of
DCTDecode to store arbitrary data also impossible at fi rst
sight.

COLOUR SPACE CONVERSION
However, only the colour mode of JPEG has been inspected
so far, where the image is actually stored in the YCbCr
colour space, using certain properties of the human visual
system to increase effi ciency. Practically, this means
converting RGB values into luminance (Y) and two

chrominance (Cb, Cr) components with a set of equations
[6] before encoding.

If these calculations are computed with fi nite precision,
rounding errors could occur, causing information loss –
certain RGB values are impossible to represent in the output.
Since at high q

f
 settings, the quantization tables contain only

1s, it could be assumed that actually all of the information
loss was due to this conversion.

This assumption can be verifi ed because JPEG has a separate
greyscale mode. Omitting any colour space conversion, using
only the luminance layer, every 24 bits of incoming data
represent only a single pixel of the image.

PROOF OF CONCEPT
A PoC fi le was made, where a short script was encoded as a
greyscale JPEG image with the highest quality setting. The
script was padded with 0x00 bytes until the next MCU

Figure 3: The script used for demonstration, encoded as a greyscale image.

Figure 4: After opening the fi le in Reader 9.

 VIRUS BULLETIN www.virusbtn.com

FEBRUARY 2015 3

boundary, and this was repeated seven more times. Then it
was placed in an Image object fi ltered with DCTDecode,
which was referenced by a JavaScript action entry.

When opening the document, the alert dialog just pops up
under the old Reader 9 (Figure 4), proving that the code of
the short script was decompressed losslessly.

Under Reader XI, certain bits changed in the decompressed
data, rendering the original fi le unusable. However, simply
changing a couple of characters in each MCU of the stream
until the decompressed data looked as it was expected to was
enough for the fi le to work again.

CONCLUSIONS

Following the introduction of a sandbox for JavaScript
code in Acrobat Reader, the use of PDF as an attack vector
decreased dramatically. However, the PoC fi le described here
demonstrates a new way to store data in PDF fi les. Although
this is not a security breach in itself (an exploit still needs
to be used inside the stream for malicious activity), the fact
that the usage of DCTDecode for this purpose has seemingly
been ruled out by the industry means that even known threats
could be hidden in this way from anti-virus scanners and/or
researchers.

In order to provide users with maximum protection, the
DCTDecode stream must no longer be overlooked: in PDF
reader implementations, the referencing of uncompressed
image data as parameters from objects expecting binary data
should be prohibited. We should also perhaps re-examine the
handling of other fi le formats in which data in JPEG format is
assumed always to be lossily compressed, while a greyscale
mode is still available.

Figure 5: The script is invisible in PdfStreamDumper.

REFERENCES
[1] Baccas, P. PDF malware adopts another obfuscation

trick in attempt to avoid detection.
http://nakedsecurity.sophos.com/2012/04/05/ccittfax-
pdf-malware/.

[2] Sejtko, J. Another nasty trick in malicious PDF.
http://blog.avast.com/2011/04/22/another-nasty-
trick-in-malicious-pdf/.

[3] Baccas, P. Malicious PDFs: A summary of my
VB2010 presentation. http://nakedsecurity.sophos.
com/2010/10/08/malicious-pdfs-points-vb2010-
presentation/.

[4] PDF Reference, version 1.7, table 3.5 ‘Standard fi lters’.

[5] Supporting the DCT Filters in PostScript Level 2.
Technical Note #5116, Adobe Systems Incorporated.
Section 23.

[6] Hamilton, E. JPEG File Interchange Format, version
1.02. http://www.w3.org/Graphics/JPEG/jfi f3.pdf (p.3).

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Consultant Technical Editors: Dr Morton Swimmer, Ian Whalley

© 2015 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

