VIFUS coveosn

VIRUS BULLETIN

global threat landscape

OBFUSCATION IN ANDROID
MALWARE, AND HOW TO FIGHT

BACK

Axelle Apvrille & Ruchna Nigam
Fortinet, France

Malware authors are certainly creative when it comes to

hiding their payloads from analysts’ eyes, using methods such

as emulator detection, application icon hiding, reflection etc.
This paper focuses on obfuscation techniques encountered
while analysing Android malware. We present five off-
the-shelf products (ProGuard, DexGuard, APK Protect,
HoseDex2Jar and Bangcle) and make suggestions as to how
researchers can detect when they have been used in malware,
and some techniques to help with their reversing. We also list
some custom obfuscation techniques we have encountered in
malware: loading native libraries, hiding exploits in package
assets, truncating URLSs, using encryption etc. We provide
examples and supply the sha256 hash in each case. Finally,
we reveal a few new obfuscation techniques of which we

are aware, which might be used by malware authors in the
future. There are techniques for injecting malicious bytecode,
manipulating the DEX file format to hide methods, and
customizing the output of encryption to hide an APK. We
provide the current state of play as regards ongoing research
to detect and mitigate against these mechanisms.

1. INTRODUCTION

While obfuscation is not reprehensible, it has always been
particularly popular with malware authors. Numerous
Windows malware families use packers, obfuscation and
anti-debugging techniques to hide their devious intentions
from end-users and security researchers alike.

“The use of ProGuard or a similar program to obfuscate
your code is strongly recommended for all applications
that use Google Play Licensing.’ [1]
In this paper, our aim is to assist security researchers and
anti-virus analysts in their reverse engineering of Android
malware. We provide tips to detect specific obfuscators, as
well as techniques for reversing them and accessing the real
payload.

2. DETECTING AND REVERSING OFF-THE-
SHELF ANDROID OBFUSCATION TOOLS

ProGuard is the most well known of all the Android
obfuscators, as it is integrated into the Android build

framework itself. It is also often encountered in malware'.
However, other tools, such as DexGuard — the extended
commercial version of ProGuard — and APK Protect also
exist.

2.1 ProGuard

By default, ProGuard renames paths, class names, methods
and variables using the alphabet. Thus, spotting strings
such as ‘a/a/a;->a’ in the smali code is a strong indication
that the sample has been obfuscated using ProGuard.

Of course, this simplistic method of detection is not
infallible because ProGuard can be configured to use

any replacement dictionary you wish using the options
-obfuscationdictionary, -classobfuscationdictionary and
-packageobfuscationdictionary. For instance,
Android/GinMaster.L uses a custom dictionary, where the
strings were probably generated randomly using something
like http://www.random.org/strings.

The replacement of path names, class names, methods and
variables cannot be undone. However, usually the reversing
of ProGuard-ed samples isn’t too difficult because the strings
and code layout are not modified. The work is very similar to
reversing an application coded by a beginner (poor choice of
variable names etc.).

2.2 DexGuard

Working on DexGuard-ed samples is much more difficult.
[2] lists the obfuscator’s features. The main reason why
DexGuard-obfuscated samples are more difficult to work
with is because the class and method names are replaced
with non-ASCII characters and strings are encrypted. Tools
such as JD-GUI [3] and Androguard [4] are more difficult to
use (e.g. difficult to get name completion). It is as if reverse
engineers have had their senses dulled: text strings and even
some familiar function calls and patterns no longer exist to
guide the analyst to the more interesting parts of the code.

Fortunately, no obfuscator is perfect. [5] clarifies parts

of how DexGuard works. Meanwhile, we provide a code
snippet that can be used to detect it, and three different ways
to help with the reversing of DexGuard-ed samples.

First, its detection — i.e. identifying the use of DexGuard

on a sample — is usually fairly visual: the repetitive use of
non-ASCII characters gives it away. The code snippet below
lists non-ASCII smali files in smali disassembled code.

$ find . -type f -name “*.smali” -print | perl -ne
‘print if /[$"$ [:ascii:]]/’

'In a partial database of 460,493 samples, we spotted it in 15% of

samples.

VIRUS BULLETIN

Second, its reversing can be made easier by using the
following tools or techniques:

e DexGuard decryption python script. [6] provides a
script template that can be applied to each DexGuard-ed
sample. The script decrypts encrypted strings, which
makes reversing easier. However, this tool only works
with samples that use old versions of DexGuard, not the
more recent ones.

* Logging. A reverse engineer can disassemble the
sample with baksmali [7], insert calls to Android logging
functions (see below), recompile the application (smali),
and run it.

invoke-static {vl, v2}, Landroid/util/Log;->e(Ljava/

lang/String;Ljava/lang/String;)I
This displays corresponding strings in Android logs. It is
an archaic, but simple and useful debugging technique.
Nevertheless, this technique requires modification of
the malicious sample — a practice anti-virus analysts are
usually not authorized (or willing) to perform for ethical
and security reasons.

* String renaming. To work around the problems caused
by non-ASCII characters, all strings can automatically
be renamed to a dummy ASCII string. To do this, we
enhanced Hidex [8]. Originally, this tool was created to
demonstrate the feasibility of hiding methods in a DEX
file (see Section 4 and [9]). However, progressively, it
has evolved into a small DEX utility tool that can be
used for the following:

- To list strings (option --show-strings).

- To automatically rename non-ASCII strings (option
--rename-strings). This is what we use, for instance,
in the case of DexGuard. Each string that contains
non-ASCII characters is replaced automatically by a
unique string generated only with ASCII characters
and which is the same size as the original string>. The
replacement string must meet the aforementioned
requirements of uniqueness and size, to conform to
the DEX file format. For proper replacement, note that
string size (UTF16 size field of string data item) is in
UTF16 code units, not in bytes. Please refer to [10].

There is one constraint that Hidex does not currently
handle: the ordering of strings. In DEX files, strings
must be ordered alphabetically. Renaming the strings
usually breaks the correct ordering. Consequently,
Android will refuse to load the modified classes.dex
file. In the case of reverse engineering malware, this
is not a real problem (perhaps it is even more secure/

2In theory, there are cases where we should fall short of replacement
strings and thus fail to do the renaming. For example, if a sample has
more strings of a single character than possible ASCII characters, the
replacement is impossible. In practice, we have never encountered this
limitation.

ethically correct) because Android reversing tools
such as baksmali, apktool, dex2jar and Androguard
do not enforce correct ordering of strings either.
Thus, they are able to disassemble the modified
classes.dex without any problem.

- To parse DEX headers and detect headers hiding
additional information (see Section 2.4).

- To detect potential hidden methods (option --detect).

2.3 APK Protect

APK Protect [11] is another advanced off-the-shelf
obfuscation product. The first time we spotted it being used in
Android malware was in Android/SmsSend.ND!tr in March
2014. It is easy to identify its use in malware, because the
string ‘APKProtected’ is present in the DEX. Like DexGuard,
its reversing is difficult. In particular, we worked out its string
encryption process, which is illustrated in Figure 1.

Obfuscated blob
Byte

XOR hard coded
1 Unique for

Encrypted string

Q:ZN]YIJ]...CZ 3Y

each blob

l “ar@oid.util.Bas@M"
Javareflection . —

Base64 decode

1

0x15 0x12™ XOR DES — Decrypted string

“decode”

Figure 1: String encryption process used in APK Protect-ed
malware.

To decrypt an encrypted string, one must:
1. Swap the first and last two bytes.

2. Base64 decode the string. Actually, the code of the APK
Protect-ed sample hides the call to Base64 decoding
methods. It does not call the method directly but via Java
reflection. The path for Base64 (android.util.Base64) is
decoded from a XOR-encrypted string, and the method
name (decode) is created by picking up the appropriate
characters in the path name.

3. XOR the decoded string.
4. Decrypt the result using the hard-coded key ‘#safeguar’.

Knowing this, it is possible to implement one’s own string
decryptor. The implementation must be adapted to each
sample as XOR keys change.

$ java SmsDecrypt

Processing string: ==aFgIDUOoPWgoK. ..
dedxor: 96500db3f2242a4b2ac920e4. ..
Decrypting: ybbc[CENSORED]icp.cc

O

VIRUS BULLETIN

An alternative to this labour-intensive method (which has to
be repeated for every single sample) is to send the sample for
analysis by Andrubis [12]. As shown in Figure 2, Andrubis
does the work for us, showing the URLs the malware
contacts and the decryption key.

- Crypto Operations

Timestamp # Safeg U a r Operation Algorithm
11.220 key DES
35,0015 007, 102 01017103 17, O F I

27.223 decryption DES
ybb p.net

27.223 decryption DES

Figure 2: Andrubis analysis results showing the decryption
key and output.

2.4 HoseDex2Jar

HoseDex2Jar is a packer that was released a year ago. It is
quite simple, and thus easy to circumvent. It is based on the
premise that, normally, DEX headers are exactly 0x70 bytes
long. However, it was found that Android does not strictly
enforce the header size, so one can add data at the end of
the header.

This is precisely what HoseDex2Jar does:
1. Encrypts the DEX.
2. Creates a new DEX for the packed app.

3. Puts the encrypted DEX into the new DEX header (e.g.
end).

4. Sets the DEX header size.

This is easy to spot: look for DEX files with header size
greater than 0x70 (= 112). This can be done using Hidex,
which displays a warning:

$ ~/dev/hideandseek/hidex/hidex.pl --input classes.

dex-hosed

WARNING: strange header size: 136080

DEX Header of file:

Magic : 6465780a30333500

To reverse hosed applications, Tim Strazzere released a de-
hoser [13]. We have not encountered any hosed malware yet.

2.5 Bangcle

Bangcle [14] is an online service for packing Android
executables. The process is the following:

1. Register on Bangcle to get a user account.
2. Download the Bangcle Assistant tool.

3. Use the tool to upload your package. At this point,
Bangcle servers do check that the package is not
malicious, but they can be fooled.

4. Retrieve the protected app (for a signed version of
the protected app, a keystore must be uploaded by the
user).

The packing process modifies the structure of the original
APK quite extensively:

* The name of the application is changed (always) to
com.secapk.wrapper.ApplicationWrapper.

¢ There are new assets and new native libraries.
¢ The manifest is modified.

* The classes.dex file is completely modified. The original
activity no longer exists and is replaced by a generic
placeholder.

There are several ways to detect the use of Bangcle:

the application’s name ‘com.secapk.wrapper.
ApplicationWrapper’, the presence of an asset named
‘bangcle classes.jar’, the presence of native libraries named
‘libsecexe’ and ‘libsecmain’, and class names such as
‘FirstApplication’ or ‘ACall’.

The difficulty lies in reversing samples that are protected with
Bangcle. Though this has yet to be confirmed, [15] claims that
‘a growing percentage of malware, such as bank Zeus, SMS
Sender, and re-packaged applications, are packed by [the
Bangcle] service’. We spotted Bangcle in Android/Feejar.B.

Bangcle is particularly resistant to reverse engineering
because:

* Functions exported by native libraries have obfuscated
names.

e Several libc functions, like mmap2, munmap, open,
read, write, close and msync, are hooked. It is likely
that ptrace is hooked too, as debuggers have difficulty
attaching to certain Bangcle processes.

* The libraries are compiled with stack protection enabled
(stack chk guard).

e The real application is encrypted, and only decrypted in
memory at runtime. In particular, the RC4 algorithm is
used [16].

Interesting analyses can be found in [17, 18] (in Chinese).

The solution we used in order to gain a better understanding
of packed malware consists of using /DA Pro’s ARM remote
debugger. The remote debugger server is on the Android
platform, while it communicates with /DA Pro on a remote
host. We attach to the thread of a process that loads libsecmain
and dump the memory when it is decrypted (see Figure 3).

3. CUSTOM OBFUSCATION

Malware authors have been very active in designing their
own obfuscation techniques. Some of the techniques are
basic, and others are more complicated:

Vb

VIRUS BULLETIN

LOAD:000070BC

LOAD:000070BC EXPORT so_main
LOAD:000070BC so_main
OAD:000070BC LDMIA Re, {R0,R3Ré,R7}
LOAD:000070BE STR R2,[R2#0x45]
LOAD-000070C0 STR R2 [R7R2]
LOAD-000070C2 LDRE RO, [R3,Ré]
“ILOAD:000070CA SUBS RO, RS, #5
LOAD:000070C6 MOVS RI1,#0x92; &'
LOAD-000070C6
LOAD-000070C8 DCD 0x5SE13FB25, 0x48768EF4A, 0x3CBAFD6C, IxD76D243F
LOAD:000070D8
LOAD:000070D8
F LOAD:000070D8 loc_7008 ; CODE XREF: LOAD:000071B8j
r - i

LOAD:000070D8 ADDS Ré, #7A; "z
LOAD:000070DA ASRS R2 R0, #5
LOAD:000070DC BGE loc_71D2

- |LOAD:000070DE BGE loc_7182
ILOAD:000070E0 CMP RS, #0:x22; ™
LOAD:000070E2 SUBS R3,Ré, #2
LOAD:000070E4 LDR Ré, =0x507BA51%

7777777 LOAD:000070E6 BEQ loc_71C8
LOAD:000070EB SBCS Ré,R7
LOAD:000070EA ADDS R2 R4, #4
' LOAD:000070EC ADD R2, 5P, #0x204
———— |LOAD:000070EE B loc_6954
5] LOAD:000070EE
' LOAD:000070FD DCD DxFEASD7A, DxDDECAFBD, Dx4F6D99BY, 0xC19C7DB6, 0xBCAIFBIC
LOAD:000070FD DCD 0xADDO1C39, 0x410BABEB, 0x721D281, 0x92656034, 0x4A587743
: ' LOAD:00007118
, = [LOAD:00007118 CBZ RO, loc_7196
1 LOAD:0000711A
: 1+ LOAD:0000711A loc_711A ; CODE XREF: LOAD:000071D4yj
= =Fe || 0AD.00007T1A B loc_72Bé
’ + JLOAD:00007114;
[LOAD:0000711C DCB 0xAD; &

[[OAD:4009F0BC ; ==-----=------- SUBROUTINE ===mmmmmmmmemmmsmmmmomeemmammemmmeans
LOAD:4009F0BC

LOAD:400%F0BC

LOAD:4009F0BC EXPORT s0_main

LOAD:4009F0BC so_rnain

LOAD:4009F0BC

LOAD:4009F0BC var_60= -0xé0

LOAD:4009F0BC var_54=-0x54

LOAD:4009F0BC

LOAD:4009F0BC PUSH {R4-R7 LR}

LOAD:4009F0BE MOV R7,R11

LOAD:4009F0COMOY Ré, R10

LOAD:4009FO0C2 MOY RS, R

LOAD:4009F0C4 MOY R4, R8

LOAD:4009F0C6 PUSH {R4-R7}

LOAD:4009F0C8 LDR R4, =(_GLOBAL_OFFSET_TABLE_- 0x4009F0D2)

LOAD:4009FOCA SUB SF, SF, #0x3C

LOAD:4009FOCC LDR R2, =(alzocaz] ggymxed - Ox4009F0DA)

LOAD:4009FOCE ADD R4, PC, _GLOBAL_OFFSET_TABLE_

LOAD:4009F0D0 STR R, [SF,#Dx60evar_60]

LOAD:4009F0D2 LDR R4, =(aAssetsMetaData - (x4009F0DC)

LOAD:4009F0D4 STR R1, [SPH0x60+var_54]

LOAD:4009F0D6 ADD R2, PC ; alzocaziggymxed "iZ0CAZ1gGYM<E dPWGNG3S55)ikOW77=="
LOAD:4009F0D8 ADD R4, PC ‘assets/meta-data/manifest mf*
LOAD:4009FODAADDS R4, #0460 ;™
LOAD:4009F0DC MOVS R3, R4
LOAD:4009FODE LDMIA R2|, {R0,R5,R7} ; "iZOCAZ1 gGYMXEdPWGENG3555jikO
LOAD:4009F0ED STMIA R3!, {RO,R5,R7}

LOAD:4009F0E2 LDMIA R2l,{R1,R5R7}

LOAD:4009F0E4 STMIA R3l, {R1,R5R7}

LOAD:4009F0ES LOMIA R2| {RO,RT}

LOAD:4009F0EB STMIA R3I, {RO,R1}

LOAD:4009FOEALDR R1, =(a7fwgmsnSptciuo - 0x4009F0F 4)

LOAD:4009FO0EC LDRB R2, [R2]

LOAD:4009F0EE MOVS RO, R4

LOAD:4009FOF0ADD R1, PC, affwgmsnSptciuo "7FwQmshSPiciUOpfL1Y/erd4zSE GAbgdl+ 328gv"
LOAD:4009FOF2 STRB R2, [R3]
LOAD:4009FOF4BL sub_4009ERS0

Figure 3: Decrypted memory of a protected application.

Android malware name Year of discovery | Obfuscation
SmsSend.N 2012 ProGuard-ed
66699d5¢55f442203d5b933e87339d3c2f7f256037b45d6ad3ba9e00a6500851

Plankton.B!tr 2011 ProGuard-ed
6600fdf4e758bfab3b73ab26270dd9f4c02847f144e28c255919aee7d91a0f1 1 parts
DroidKungFu.D!tr 2011 ProGuard-ed
938efb5bdc96d353b28af57da2021b6a3c5a64452067059bf50d7fb7c¢7266426 parts
Dendroid. Altr 2014 DexGuard-ed
0b8balc6eebe5695639bf1b282b52f126dba733f3c204e37615a3ba5f7dd6fed

Rmspy.Altr 2013 DexGuard-ed
57e37d4ctfc9e0ead287ba72185¢c12bbdcectfdel1a56041f3c3d12c31belaat5506

Obad.A 2013 DexGuard-ed
b65¢352d44falc73841c929757b3ae808522aa2ee3fd0a3591d4ab67598d17

SmsSend.ND 2014 APK Protect-ed
3aee81db24540fbob3666a38683259fd32713187ec6e0b421da9b91bd216205f

Feejar.B 2014 Bangcle
0000350c0792f61ee513f40bd9a42d09144cc6a3c4f2171£812ef415a9a51640

Table 1: Examples of malware using off-the-shelf obfuscation tools.

 Using very long class names to defeat tools. This
technique has been mentioned in [19] and seen in the
wild in Android/Mseg.A!tr.spy (sha256 hash: cc42f8alfc
6805a9deeaae198fb4580b304b51489dec4209929a09b9c
3868ace).

¢ Using nops to modify the bytecode flow. This was
mentioned in [20], and is extremely common.

¢ Path obfuscation. For example, in an Android/Plankton

sample, the normal Airpush SDK path is replaced by
com/OajgOKqg/FYmaEVCV92392.

e Path phishing. This consists of using a well known
(legitimate) path and hijacking it for illegitimate
purposes. For example, in Android/RuSMS.AOQ,

com.adobe.air (normally used by Adobe AIR) is used to

O

VIRUS BULLETIN

hide the malicious functionality. Path phishing is very
common too.

Hiding packages, JARs etc. in raw resources or
assets. Table 2 lists some examples of malware samples
that hide malicious packages in resource files. For
example, Android/SmsZombie.A!tr hides a malicious
package in a JPG named ‘a33.jpg’ in the assets directory.
Android/Gamex.Altr hides an encrypted malicious
package in an asset named ‘logos.png’. This is close to
what is referred to as a polyglot file [21], i.e. a file which
is valid and meaningful for different formats. In Gamex,
the asset ‘logos.png’ is not a valid PNG (thus not really
a polyglot), but a ZIP. However, it has the peculiarity of
being a valid ZIP file as such, and also another valid ZIP
file when XOR’ed with the right key (18).

Hiding bytecode. (For instance, abusing linear
sweep disassemblers [22].) According to [16], this

is encountered in up to 30% of obfuscated samples.
For example, we find it in Android/Agent.SZ!tr.

This technique can be detected by looking for Dalvik

Linear sweep: obfuscated view

fill-array-data Array
opcode Seen as junk bytecode

Recursive traversal: real view

goto m Dalvik bytecode

Figure 4: Bytecode is hidden in the array of fill-array-data
and invisible to Dalvik disassemblers, which use linear
sweep.

bytecode that does a goto followed by fill-array-data
opcode (see Figure 4). Reverse engineers can use the
script androdis.py released with Androguard [4].

e String table. Android/GinMaster.L. (sha256 hash: e8646
7622b8faf903edcebe0a57b85c036aa59b1820694ef326b
50062dfdc910) builds its own string table as a char array
(see below array named ‘OGqHAYq8NOY6tswt8g’).

package Eg9Vk5Jan;
class x18nAzukp {
final private static char[][] OGgHAYg8N6Y6tswt8g;
static x18nAzukp ()
{

v0 = new char([][48];

vl = new char[49];

vli= {97, 0, 110, O, 100, O, 114, O, 111, ...
v0[0] = v1;

v2 = new char([56];

v2 = {... 110, 0, 97, 0O, 103, 0, 101, O, 114, 0};
vO[1l] = v2;

}
protected static String rLGAEh9JeCgGn73A (int p2) {
return new String(
Eg9Vk5Jan.x18nAzukp.OGgHAYg8N6Y6tswt8g[p2]) ;
}

new StringBuilder (x18nAzukp.rLGAEh9JeCgGn73A (43)

The rest of the code references the strings in that char
array. So you never see the strings directly, but instead
indirect calls like rTLGAEh9JeCgGn73A(43) etc.

* Naive encoding or encryption. Many samples use
Base64 (e.g. Android/Stels), XOR (Android/Fakelnst),
Caesar (Android/Pincer), or simply chop the data into
several chunks (e.g. Android/RuSMS.AO below).

String.valueOf (“http”) + “://” + “ap” + “iad” + “ver”
+ “t.ru”);

Android malware name

Year of discovery

Obfuscation

Gamex.Altr

ae7a20692250f85d7a2ed205994f2d26{2d695aef15a9356938454bccbbbd069

2013

Assets contain a file named
‘logos.png’. This is not a
PNG, but a ZIP, and it unzips
to different valid outputs
depending on whether
XOR’ed with key (18) or not.

SmsZombie.Altr 2012 Hides malicious package in
45099416acd51a4517bd8f6fb994ee0bb9408bdd80dd906183a3cdb4b39c¢4791 ‘a33.pg’.
DroidCoupon.Altr 2011 The Rage Against the Cage

94112b350d0fece0a788fb042706cb623a55b559ab4697¢cb10ca6200ea7714

exploit is hidden in a PNG file
in raw resources.

Table 2: Examples of samples hiding malicious packages in resource files.

Vb

VIRUS BULLETIN

Android malware name Year of Obfuscation
discovery
Agent.SZ!tr 2014 Hides bytecode using [22].
1673£18d7t5778dc4875f10dc507fc9d59be82eaf5060dfcdbfa7a7d6007f7df
RuSMS.AO 2014 Strings are cut into several parts so
768cfe8fScas2c13508b11387504a68174387e44321d68c132e2a7b6e0cbe0a as not to be spotted. Uses Adobe’s
AIR namespace so as not to look
suspicious.
Stels.Altr 2013 Custom base64 to decode the URL.
03¢c1b44c94c86c3137862c20f91745e0f89ce2cdb778dc6466a06a65b7a591ae
Pincer.Altr.spy 2013 Caesar shift to read C&C URL and
fee013fcbbd30ef37c99eab56aa550d27e00e69150f342b80b08d689a98ccefe phone number.
Tascudap.Altr 2013 ProGuard-ed. URL is generated
Obe2a4b3a0e68769faSh3c9cd737e0e87abd6cddb29a7e 1 fdf326f407a658b54 from custom encryption. Malware

also uses AES with a key which is
built from a hard-coded seed.

SaurFtp.Altr.spy 2013 C&C URL is XOR encrypted.

e769fdf8f2e1a5311ef089c422a7c0cb360d77082d7d1ef139a95¢9321ec40

Fakelnst.Altr.dial 2012 SMS text bodies and phone numbers

ac118892190417¢39a9¢cbe8 1ce740cf4777fde 1 are hidden in a text chunk inside a
PNG and ‘encrypted’ using XOR.

Vdloader.Altr 2012 Custom encryption: decrypted =

¢17¢a0937891974d852f619d3b7be5defc79c6d7bi6f3beeebb99 1684563902 char - pos.

Temai.Altr 2012 Downloads another password-

14354ddd2a9d63b3b5c5db94£d717953572£1293291e26bc7a4725be4b0b3b8 protected ZIP file. This ZIP file

is decrypted with a hard-coded
password, and is a script that opens a
backdoor on the phone.

LuckyCat.Altr 2012 XOR encryption of traffic sent to
5d2b0d 143£09£31b£520a0810c66£94660490945a4ee679¢a80f709aae3bd attacker.

Pjapps.Altr 2011 URL to contact is ‘encrypted’ with
02329dc3aa91b5175461b3¢298b411fe9d35c8425a5fad85c3a3cddaal 2c7d2a a simple algorithm where you only

keep one character in every two.

Table 3: A non-exhaustive list of malicious Android samples using custom obfuscation techniques.

Some other samples are more creative: encrypted emails, and so on. Recent statistical analysis
Android/Vdloader encrypts characters by of our Android malware database showed that 27% of
subtracting their position in the string (first character malware samples use encryption®. For example,

minus 0, second character minus 1, etc.), while Android/Geinimi uses DES, Android/SmsSpy. HW !tr
Android/Tascudap uses its own algorithm. Table 3 lists uses Blowfish, and Android/RootSmart uses AES. Also
a few examples of samples that use their own custom note that Android’s License Verification Library (LVL)
techniques. uses AES-based obfuscation:

. . 3This percentage should be understood as an approximate maximum, as
¢ Encryption. Malware authors use encryption for . . . s ,
some pieces of malware use encryption but in the ‘legitimate’ parts of

various reasons [_23]:. to anceal strings and exploits, to their code, not for malicious intent. This has been computed over a set of
encrypt communication with the C&C server, to send 460,493 Android samples.

O

VIRUS BULLETIN

1. A hard-coded prefix (‘com.android.vending.
licensing. AESObfuscator-11") is added to the string
to be obfuscated.

2. The string is encrypted using AES in CBC mode and
PKCSS padding. The key and IV are hard coded.

3. The encrypted result is encoded with Base64.

package com.android.vending.licensing;
public class AESObfuscator implements Obfuscator {

private static final String CIPHER ALGORITHM =
“AES/CBC/PKCS5Padding”;

private static final byte[] IV = { 16, 74, 71, -80...
private static final String header =

“com.android.vending.licensing.AESObfuscator-1[";

LVL’s obfuscation is used in some samples of
Android/Plankton.

In most cases, the encryption is hard coded. However,
some malware do not actually hard code it, but regenerate
the key from a random number generator seeded with a
hard-coded seed. For instance, this technique is used by
Android/RootSmart and Android/Fjcon.

Table 4 lists a few examples of samples that use
encryption as an obfuscation technique.

The reversing of samples using cryptography usually
means copy-pasting the decompiled Java code that
handles the decryption (perhaps with slight adaptation)
and running it independently on the data to decrypt.
Python comes in handy for writing quick decryption
code as there are many decryption libraries. For example,
we decrypt an encrypted XML configuration file of
Android/SmsSpy.HW !tr using the following code:

import Crypto
from Crypto.Cipher import Blowfish

def PKCS5Padding(string):
byteNum = len(string)
packingLength = 8 - byteNum % 8
appendage = chr (packingLength) * packingLength

return string + appendage

def DoDecrypt (string):
key = ‘tisWsx2xivgQXRxqg’
cl = Blowfish.new (key, Blowfish.MODE_ ECB)

packedString

PKCS5Padding (string)
return cl.decrypt (packedString)

¢ Loading non-Dalvik code. For instance,
Android/DroidKungFu.G loads an ELF executable
which holds the payload. Android/FakePlay.B!tr holds
a malicious JavaScript that implements click fraud. On
Windows Mobile, we have seen WinCE/Redoc loading

Basic via Basic4PPC. Basic4Android exists, but we
haven’t seen any malicious samples using it yet. Flash
code could hold malicious payloads too.

4. OBFUSCATION IN THE FUTURE

As we have seen in the previous sections, malware authors are
interested in obfuscating their code, and if Android’s crime
scene continues to follow the evolution of Windows malware
(as it has done until now), then we are only at the beginning
of the story. In particular, packers are likely to normalize as
UPX (and others) did for Windows. In this section, we prepare
for techniques malware authors might use in the near future.

In [24], Bremer demonstrates that it is possible to inject
bytecode into nearly any class, with only minor modification.
The class needs to have at least a virtual function, and the
injection code must read the bytecode to inject as a string and
replace the address of that virtual method with the address of
the string. An attacker could use this technique for evil:

* Create a genuine application which acts as a bytecode
loader.

» Read (possibly decrypt) bytecode to inject from a
resource, or a remote host.

* Inject that bytecode into the genuine application and
have it perform a malicious action.

Fortunately, for now, Bremer’s technique is limited to returning
integers (see Figure 5). However, there is no doubt that it

can (and perhaps will) be extended in the future. Anti-virus
analysts may try to detect the bytecode loading code, which is
based on the iput-quick and invoke-virtual opcodes, however a
generic signature will be difficult to design as there are several
possible variations and potential false positives.

5
% DvmEscape

001307de000f

Run Dalvik

2014

Figure 5: Injecting constant O0x07de = 2014 bytecode in
Bremer’s proof of concept.

In [9], we demonstrated that it is possible to hide methods
from disassemblers. This is potentially interesting to attackers

Vo

VIRUS BULLETIN

2e998614b17adbafeb55b5fb9820f63aecSce8b4

Android malware name Year of Obfuscation
discovery

SmsSpy.HW !tr.spy 2014 Contains an asset, ‘data.xml’,

69cb8163e959e60b0e024457449c4c8d2586ed3c2e4635 1 fdedec8ef64aTa which is encrypted using

79 Blowfish ECB and a hard-coded
key.

Agent. BH!tr.spy 2014 Sends emails using SMTP with

5¢89b1b008efee0c326294d0a02¢77845¢d91d 1 faad5df6bf7b6d54a5f3cd0 TLS authentication.

d3

GMaster.B 2013 Uses Triple DES EDE, CBC with

18ad4064750a0e4733282879476e6d5b4e60b0fc79¢54bald8955db82e48 PKCS7 padding to send JSON

9d2 object containing IMSI, IMEI and
various OS parameters.

FakeDefend.Altr 2013 List of fake infections to display

5ad411cdcbf688449c470b5 14ed4ee3 1 cafdf2997¢3cd0e6af032750edcass OA'E;‘G device is encrypted with

NotCompatible.A!tr.bdr 2012 C&C URLs located in a raw

2¢5e656af90044cf5cc694519a42477cb18bd4b2722b1474cdead4a8748d3 resources file are encrypted

£70 using AES in ECB mode. The
encryption key is the sha256 hash
of a hard-coded value.

Fjcon.Altr 2012 URLs are encrypted using AES.

39f64285207b8184c4940252¢e2fadf7e903ea0a611bc1bebc84d33a8b692b The encryption key is generated

ada using a SHA-1-based PRNG,
seeded with value 125.

RootSmart.Altr.dldr 2012 Domain name is encrypted using

cedfed4762¢1¢3492f0cad 135afdc258fa7b39%ech9c 1 56a60f1 5¢9d05a3acTe AES. The encryption key is
generated using a SHA-1-based
PRNG.

BaseBridge. Altr 2011 Uses variable and string

07¢1349dfc31¢9e6251a2920521¢45317 1¢¢296352861902699734a8a7b7f obfuscation. Uses AES

554 encryption.

Hongtoutou.Altr 2011 Encrypts phone info sent to

4ae1c0faa06eeddib6c96b6537d027¢90c870d7d3ddefd5fede680be9dc51¢69 attacker, using DES.

SndApp.Altr.spy 2011 Uses AES in CBC mode.

7e057d3133639374195da6¢9805fd7f0edb818047d49955¢3f529101694

JSmsHider. Altr 2011 Encrypts its communication with

0ea2d931ebb55668ech101304316725f6fal 574dbb191dc2d647c65b3acbf the C&C using DES.

Geinimi.Altr 2011 Communication with the C&C

is encrypted, so are commands
and strings inside the binary. The
algorithm is DES, and the key is
hard coded.

Table 4: Examples of malicious samples using cryptography as an obfuscation technique.

O

VIRUS BULLETIN

Android malware name Year of Obfuscation
discovery
FakePlay.B!tr 2013 The malicious payload is in the
4bded6accfeb2c85fe75c6dd57bbas898bb3316f7c4be788bc18676451b54561 JavaScript.
DroidKungFu.Gltr 2012 Asset named ‘mylogo.jpg’
b03a8fc6d508¢16652b07fb0c3418ce04bd9a3c8e47a3b134615¢339¢6e66bf7 is a valid JPG file, but it also
contains an ELF.

Table 5: Examples of samples loading non-Dalvik malicious code.

if they locate their malicious code in those hidden parts.
Fortunately, the technique was published along with the
Hidex detection tool [8]. (For more information, please see
slides from Insomni’hack 2014 [9].)

Ange Albertini has released a Python script [25, 26] that is
able to manipulate the encrypted output of AES or DES so
that it looks like a customizable PNG, JPG or sound file. A
malware author might be interested in using this technique
to hide an APK in assets or resources. He/she would create
an application which looks fairly genuine, with a seemingly
innocent PNG as an asset. The code would load the asset and
decrypt it with a hard-coded key to reveal the real, evil APK.
The malicious APK would then be installed on the device.
The attack is feasible, and such an APK can be created using
AngeCryption. However, a few hacks are necessary: the

End Of Central Directory (EOCD), which marks the end of
the ZIP file, must be duplicated and padded to 16 bytes (for
encryption with AES). We are currently working on a proof
of concept and detection tool.

5. CONCLUSION

We have seen Android malware authors use plenty of
different techniques to obfuscate their code. With new

tools like Bangcle, APK Protect and DexGuard, we fear

that mobile malware will become increasingly difficult to
reverse in the near future — not to mention techniques such
as bytecode injection, method hiding or AngeCryption which
haven’t been seen on the malware scene, yet.

In this paper, we have shown that we are not totally helpless
in the face of obfuscation. A few simple, but well chosen
Unix find/grep commands are useful for understanding what
is happening. And in most cases, we have managed to reverse
samples with known existing tools such as baksmali, apktool
and Androguard — these tools usually work adequately (or
nearly), it is more a matter of looking at the right location.
Moreover, encryption, which sounds frightening at first, does
not turn out to be so difficult to reverse in practice: we just
have to write a few lines of code to decrypt the ciphertext.
For situations in which reversing remains difficult, we have
provided a few enhancements to Hidex, a Perl script which
assists reverse engineers in detecting some situations, and

helps with the renaming of non-ASCII strings used by some
obfuscators.

So we are not helpless, but if we want to keep pace with

the techniques malware authors are likely to use in the near
future, we had better focus on tools and research in this area
as soon as possible.

ACKNOWLEDGEMENTS

We thank Ange Albertini, Jurriaan Bremer, Anthony Desnos,
Robert Lipovsky and Miroslav Legen for their help.

REFERENCES

[1] Implementing an Obfuscator. https://developer.
android.com/google/play/licensing/adding-licensing.
html#impl-Obfuscator.

[2] DexGuard. http://www.saikoa.com/dexguard/.

[3] JD-GUL http://jd.benow.ca/.

[4] Androguard. https://code.google.com/p/androguard/.
[5] Nihilus. Reversing DexGuard 5.x. version 1.

[6] Falliere, N. A look inside DexGuard.

http://www.android-decompiler.com/
blog/2013/04/02/a-look-inside-dexguard/.

[71 Smali. https://code.google.com/p/smali/.

[8] Hidex. https://github.com/cryptax/dextools/tree/
master/hidex.

[9] Apvrille, A. Playing Hide and Seek with Dalvik
Executables. In Hack.Lu, October 2013.
http://www.fortiguard.com/uploads/general/hidex_
insomni.pdf.

[10] Android. Dalvik Executable Format.
http://source.android.com/devices/tech/dalvik/
dex-format.html.

[11] APK Protect. http://www.apkprotect.com/.
[12] Andrubis. http://anubis.iseclab.org/.

[13] Dehoser. https://github.com/strazzere/dehoser/.
[14] Bangcle. http://www.bangcle.com/.

Vb

VIRUS BULLETIN

[15] Yu, R. Android packer: facing the challenges,
building solutions. In Proceedings of the 24th Virus
Bulletin International Conference (VB2014). (To be
published.)

[16] Lipovsky, R. Obfuzzcation issues. In CARO
Workshop, May 2014.

[17] Jia,J. Android APK. May 2013. http://blog.csdn.net/
androidsecurity/ (in Chinese).

[18] Pan, B. Bangcle and crack the encryption method.
December 2013. http: //pandazheng.blog.163.com/
blog/static/1768172092013119311705/ (in Chinese).

[19] Strazzere, T. Dex Education: Practicing Safe Dex.
BlackHat USA, July 2012. http://www.strazzere.
com/papers/DexEducation-PracticingSafeDex.pdf.

[20] Mody, S. ‘I am not the D’r.0,1d you are looking for’:
an Analysis of Android Malware Obfuscation. In
Proceedings of the 23rd Virus Bulletin International
Conference, pp.105-113, October 2013.

[21] Albertini, A. This PDF is a JPEG; or This Proof of
Concept is a Picture of Cats. Journal of PoC — GTFO,
3,2014.

[22] Schulz, P. Dalvik Bytecode Obfuscation on Android,
July 2012.

[23] Apvrille, A. Cryptography for Mobile Malware
Obfuscation. In RSA Europe Conference, 2011.
http://www.fortiguard.com/files/NMS-305-Apvrille-
Revised.pdf.

[24] Bremer, J. Abusing Dalvik Beyond Recognition,
October 2013. Hack.lu.

[25] Albertini, A. When AES(*)="*, April 2014.
https://corkami.googlecode.com/svn/trunk/ src/
angecryption/slides/AngeCryption.pdf.

[26] Angecrypt.py. http://corkami.googlecode.com/svn/
trunk/src/angecryption/angecrypt.py.

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira
Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Perl Developer: Tom Gracey

Consultant Technical Editors: Dr Morton Swimmer, lan Whalley

© 2014 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire 0X14 3YP, England.

Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

