(o]
~
(o]
Y
©
0
()]
o
zZ
0
2]

BULLETIN

CONTENTS

20

COMMENT
Definition-based AV software is dead

NEWS
Symantec buys again
Increase in infections for Chinese

Governments urged to do more to
combat cybercrime

Correction
VIRUS PREVALENCE TABLE

VIRUS ANALYSIS
To catch Efish

FEATURES

Testing heuristic detection in a real-world

scenario

Malware in a pig pen — part 1

TECHNICAL FEATURE
Hash woes

LETTERS

PRODUCT REVIEW
mks_vir 2004

END NOTES & NEWS

OCTOBER 2004

IN THIS ISSUE
"W PORK TALK

Pigs are considered to be the
fourth most intelligent
animals (excluding humans)
on the planet. Martin
Overton explains how he
uses a truffle-hunter of a pig, the SNORT Intrusion
Detection System (IDS), to sniff out malware.

page 10

EFISHING FOR MALWARE

From pigs to fish: Peter Ferrie and Frédéric Perriot
describe the zoo virus W32/Efish, whose author
claimed that its encryption was unbreakable.

page 4

HASH WOES

After last month’s excitement in the crypto
community following the demonstration of flaws in
a whole set of hash functions, Morton Swimmer and
Jonathan Poritz clarify the situation and explain its
significance.

page 13

@Spam supplement

This month: anti-spam news & events; the use of
trust networks for email filtering; ASRG summary.

VIirus

COMMENT

“Current AV
vendors are the
dinosaurs of the
security industry
... they will be
extinct before the
decade is out.”
Nick Scales, Secure::42

DEFINITION-BASED AV
SOFTWARE IS DEAD

There was a time when definition-based anti-virus (AV)
software was effective, but that was a long time ago and
before virus writers used the Internet to propagate their
little nasties. Why, then, do AV vendors continue to
promote the use of this type of product, which provides a
solution after the virus has attacked?

Current AV vendors are the dinosaurs of the security
industry — I believe they will be extinct before the
decade is out. We are all waiting for the revolution; a
technology that provides the user with real-time
protection from all viruses, that is simple to use and
transparent. This may sound like science fiction, but
such types of solution have been around for some time
— one example of which is policy enforcement.

A very simple anti-virus technique, policy enforcement
allows a business to set up policy rules for accepting or
rejecting code. For example, many organisations apply
the simple, but incredibly effective rule, “we will not
accept any active code unless it is from an expected
source and the code is signed as coming from a known
source”. Many large enterprise users have recognised
that this rule is highly effective in stopping the mass

Editor: Helen Martin
Technical Consultant: Matt Ham
Technical Editor: Morton Swimmer

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
lan Whalley, IBM Research, USA

Richard Ford, Florida Institute of Technology, USA
Edward Wilding, Data Genetics, UK

infection of hosts. Through the application of a sequence
of rules such as this it is possible to provide a
policy-based anti-virus solution that not only is as
effective as definition-based AV, if not more so, but
which is also cheaper and easier to manage.

So, why don’t the AV vendors set aside some of their
development budgets to produce security software that
allows for the easy implementation of these policies?
The answer is simple. Policy enforcement software does
not require the user to subscribe to a continual update
mechanism, the user does not need constant contact with
the vendor and the viruses do not need to be named and
hyped — meaning the user no longer feels constantly
under threat. All of these add up to a much lower revenue
stream and profile for the AV vendors.

It is not a coincidence that this non-detection form of AV
protection is starting to appear from those who have no
vested interest in selling the world $3 billion worth of
updates each year. Even Microsoft’s XP service pack 2
has made great strides in this direction.

This type of AV has some enormous advantages. It

does not depend on some of your customers becoming
infected first, there is no delay in providing protection,
the customers’ costs are much lower, the cost of delivery
is hugely reduced, a great deal of this technology can

be placed in the network, and it is very simple and quick
to implement.

If this is all true, why haven’t we seen it yet? Because
the AV vendors do not want it to appear. They have ignored
these technologies because they can see the impact in
their revenue streams. Imagine what would happen to the
revenues and stock prices of the top three AV vendors if
they moved away from a subscription model.

The end of this decade will be a very interesting time.

I am sure that current anti-virus technologies will be
relegated to what they should be — minor utility
programs. By 2007 anti-virus will be built into the
network and chipsets of the latest computers and devices.
Virus protection will not take the form of detection or
heuristics.

Perhaps in the future the anti-virus industry of the last 20
years will be likened to the tobacco industry — having
created and sustained an ‘unnecessary danger’ purely for
profit. Or will this be seen as a curious phase of
computing evolution that is identified with the 20th
century? Only time will tell.

Did Nick’s opinions on the anti-virus industry ruffle your
feathers, or do you agree that time is running out for
definition-based AV software? VB would love to hear
your views — email editor @virusbtn.com.

NEWS

SYMANTEC BUYS AGAIN

Symantec, the AV company that never seems to stop
shopping, has revealed its latest purchase: digital security
company @stake, Inc. A Symantec spokesperson said of the
acquisition, “By joining forces with [@stake] we expand the
capacity and capabilities of our consulting organization,
which allows us to better secure the applications that our
customers develop and deploy.” Symantec has already
acquired three companies this year: management software
manufacturer ON Technology Corp., anti-spam and email
filtering company Brightmail and anti-spam start up TurnTide.
The latest transaction is expected to complete this month.

INCREASE IN INFECTIONS FOR CHINESE

According to China’s Ministry of Public Security, 87.9 per
cent of computer users in China are affected by malware.
The Ministry revealed the figure as part of the findings of its
first national survey on Internet information security and
computer viruses. Information for the survey was gathered
from more than 7,000 organisations, including government
bodies, financial and educational institutions and
commercial organisations, as well as over 8,400 computer
users. The 87.9 per cent infection rate among the computers
of users in China is a two per cent increase from last year.

GOVERNMENTS URGED TO DO MORE
TO COMBAT CYBERCRIME

The message at a conference organized by the Council of
Europe last month was that governments must do more to
deal with Internet criminals. The Council of Europe’s 2001
Cybercrime Convention, which aims to speed up
international cooperation in investigations and extraditions,
has been signed by representatives of 30 countries, but is
now law in only eight of those countries. Driving home the
point that international cooperation is essential for
prosecuting cybercrime, Ulrich Sieber, head of the Max
Planck Institute for Foreign and International Criminal
Law, said: “Effective prosecution with [only] national
remedies is all but impossible in a global space.”

CORRECTION

VB regrets that an error slipped through the editorial net
in the August 2004 NetWare comparative review (see VB,
August 2004, p.14). Despite appearances both in the table
for on-demand scanning results and in the results listed in
the text, Eset’s NOD32 did not, in fact, miss any samples
in the polymorphic test sets. The figure should have
indicated an unblemished 100.00%. VB apologises for
the misinformation.

VIRUS BULLETIN

Prevalence Table — August 2004
Virus Type Incidents Reports
Win32/Bagle File 47,626 81.57%
Win32/Z&fi File 2,779 4.76%
Win32/Netsky File 1,431 2.45%
Win32/Dumaru File 1,197 2.05%
Win32/Mabutu File 826 1.41%
Win32/Funlove File 578 0.99%
Win32/Mydoom File 535 0.92%
Win32/Sobig File 425 0.73%
Win32/Klez File 416 0.71%
Win32/MyWife File 356 0.61%
Win32/Lovgate File 347 0.59%
Win32/Mimall File 250 0.43%
Win32/Bugbear File 201 0.34%
Win32/Swen File 182 0.31%
Win95/Spaces File 139 0.24%
Redlof Script 110 0.19%
Win32/Fizzer File 102 0.17%
Win32/Valla File 100 0.17%
Win32/Parite File 95 0.16%
Win32/Hylbris File 66 0.11%
Win32/Yaha File 63 0.11%
Win32/Mota File 52 0.09%
Win32/Sasser File 52 0.09%
Win32/BadTrans File 38 0.07%
Win32/Elkern File 37 0.06%
Win32/Magistr File 31 0.05%
Win32/Nachi File 25 0.04%
Win32/Nimada File 21 0.04%
Win32/Torvil File 21 0.04%
Win32/Bobax File 20 0.03%
Win32/Evaman File 19 0.03%
Kak Script 18 0.03%
Others!" 230 0.39%
Total 58,388 100%
[Mhe Prevalence Table includes a total of 230 reports across
44 further viruses. Readers are reminded that a complete
listing is posted at http://www.virusbtn.com/Prevalence/.

®

VIRUS BULLETIN

VIRUS ANALYSIS
TO CATCH EFISH

Peter Ferrie and Frédéric Perriot
Symantec Security Response, USA

‘W32/Efish, a member of the W32/Chiton family, contains in
its source code (released as part of 294 magazine) a
reference to the television program The Six Million Dollar
Man. The virus author wanted to call the virus EfishNC
(“efficiency”), and referred to it as “Better, Stronger, Faster”
(this virus author is not known for humility — in 1994 (s)he
named a virus Hianmyt [“high and mighty”’]). While the
code is indeed better, stronger and faster than comparable
viruses, it does have weaknesses. Symantec has not received
any wild samples of Efish, although the .A variant was
published as early as 2002. This suggests that these viruses
have not left zoo collections, despite their aggressive
infection strategy.

STINGRAY

The infection cycle of Efish starts with an infected program
dropping a standalone, unencrypted virus sample to the
Windows directory, and directing registry hooks to this file.
This standalone file, which exists independently of any host
program, then infects hosts in a parasitic way. There is no
‘direct’ infection from one host file to another.

It is worth mentioning that the standalone virus sample is an
extremely tortuous, albeit valid, PE file. The PE structure of
the file is an abomination of overlapping headers and tables,
crafted for the sake of size optimization, which —
surprisingly — loads without problem on 32-bit Windows
platforms, from Windows 95 to Windows 2003. Needless to
say, most tools of the trade from PEDUMP to Soft-ICE have
trouble mapping the file properly, and we expect that some
anti-virus products would be confused as well.

UNICORN FISH

As with all other known members of the W32/Chiton
family, Efish is fully Unicode-aware, and selects
dynamically between ANSI and Unicode routines, as
appropriate. These routines include command-line parsing,
local network and IP share enumeration, and file
enumeration. In some cases, a single routine is capable of
processing either type of character sets, by simply changing
an AND mask and using the CharNext() API. This is one of
the many code optimizations that result in such a small
amount of code (around 4kB) that is capable of so much.

There are a number of interesting optimizations in the code.
The one that appears most often (and which is the hardest to
follow) is the long series of PUSH instructions prior to a

series of API calls. The purpose of this seems to be to avoid
the reinitialization between API calls of the volatile
registers, such as ECX and EDX. One particular example is
the code for dropping the standalone virus file, which
contains 23 PUSH instructions followed by seven API calls:

PUSH EAX ;GlobalFree

PUSH EBP ;WriteFile

PUSH ESP ;WriteFile

PUSH EDT ;WriteFile

PUSH EBP ;CreateFileA

PUSH +02 ;CreateFileA

PUSH +02 ;CreateFileA

PUSH EBP ;CreateFileA

PUSH EBP ;CreateFileA

PUSH 40000000 ;CreateFileA

PUSH EAX ;CreateFileA

LEA ECX, DWORD PTR [EAX + 7F]

PUSH ECX ;MoveFileA

PUSH EAX ;MoveFileA

PUSH EAX ;GetFileAttributesA
PUSH EBP ;SetFileAttributesA
PUSH EAX ;SetFileAttributesA
PUSH ECX ;DeleteFileA

PUSH ECX ;GetTempFileNameA
PUSH EBP ;GetTempFileNameA
PUSH ESP ;GetTempFileNameA
PUSH EAX ;GetTempFileNameA
PUSH EDI ;GetWindowsDirectoryA
PUSH EAX ;GetWindowsDirectoryA
XCHG EBP, EAX

CALL GetWindowsDirectoryA

LEA EDI, DWORD PTR [EAX + EBP - 01]
CALL GetTempFileNameA

CALL DeleteFileA

CALL SetFileAttributesA

CALL GetFileAttributesA

CALL MoveFileA

CALL CreateFileA

Figure 1. The code for dropping the standalone virus file.

FISH TANKS

Efish is very aggressive when it comes to finding targets.
The target selection is contained in three threads.

The first thread periodically enumerates all drive letters,
from A: to Z:, looking for fixed and network drives. The
second thread periodically enumerates all network shares on
the local network, looking for drive resources. The third
thread periodically enumerates all network shares on
random IP addresses. In each case the virus examines all
files in all subdirectories.

BALEENS

Efish examines all files for their potential to be infected,
regardless of their extension. First the virus checks if the
file is protected by the System File Checker. While the main

o

file responsible for the protection (sfc.dll) exists in all
Windows versions that support SFC, the required function is
forwarded in Windows XP/2003 to a file called sfc_os.dll.
The method that Efish uses to retrieve the address of
exported APIs does not support export forwarding, so the
virus resolves the APIs directly from sfc_os.dll on platforms
where this .dll exists.

Unprotected files are then checked against a very strict set
of filters, which includes the condition that the file being
examined must be a character mode or GUI application for
the Intel 386+ CPU, that the file must have no digital
certificates, and that it must have no bytes outside of the
image. The latter condition is the virus’s infection marker.

Additionally, the file must satisfy the needs of the
EntryPoint-Obscuring technique (see below).

PILOTFISH

The EPO method that Efish uses is to replace a function
prologue with its own code. This method has previously
been used by such viruses as Zhengxi (on the DOS
platform) and W95/SK (on Windows). The virus searches
the first section of the file for function prologue code that
creates a stack frame, and epilogue code that destroys it.
The virus requires that the prologue and epilogue be at least
32 bytes apart, in order for the decryptor to fit.

While it might appear that only the first such sequence is
used, this is not always the case. Sometimes a later
sequence may be used, or the EPO routine may fail to find a
proper sequence even though one exists in the file. This is
most likely a coding bug, but it could have been intentional.

FEABUL ENDJINN

Once such a sequence has been found, Efish saves the first
32 bytes of that code, and replaces them with an
oligomorphic decryptor. The useful code of the decryptor is
27 to 32 bytes in length, and it is padded up to 32 bytes with
ff bytes (an artifact from the memory reuse). The Efish.A
engine comprises only about one eighth of the virus body,
yet it combines line-swapping, variable load and store
instructions and decryption in either a forwards or
backwards direction. According to our calculations, there
are 23,616 possible valid decryptors and a few invalid ones!

The engine shared by the .B and .C variants adds register
replacement, the optional use of ‘do-nothing’ instructions in
the form of INC and DEC of unused registers, and one-byte
instructions CMC, STC, and CLD.

The decryptor decrypts the virus body onto the stack and
runs it from there. This requires no changes to the attributes

VIRUS BULLETIN

of the section in which the virus body is placed within the
file, an effective anti-heuristic attack.

DfishNC

A thorough analysis of the engine reveals a lack of
optimization in several code sequences and at least two
bugs. The result of the first bug is that the PUSH EDI
instruction cannot be produced to transfer control to the
virus code. However, the code was optimized and that bug
was fixed in the .B variant.

The second bug, present in all three variants, causes Efish to
produce non-working decryptors in a few rare cases, leading
to corrupted replicants. Detection methods based on
emulation of the decryptor to recover the virus body are
bound to miss such corrupted samples.

BLOWFISH

The decryption is performed using a translate (XLAT) table,
in which each unique byte of the virus code is replaced by a
unique random value.

The virus author claimed that it is unbreakable, which is
clearly untrue, since it is simply a substitution cipher. As we
show in our VB2004 conference paper ‘Principles and
practise of x-raying’, several methods exist to break the
Efish encryption, and they work quite quickly in practice.

In the .C variant, the author of Efish refined the encryption
method a little by taking into account unused byte values
from the virus body and reusing slots in the translate table
(switching to what is known as a ‘homophonic substitution
cipher’). Fortunately, efficient attacks still exist against this
cipher and, in particular, against the somewhat simplistic
implementation in Efish.C. Once again, we refer readers to
our paper on x-raying for a thorough explanation.

Efish places its body into the last section of the file, along
with the XLAT key table, however it prepends and appends
garbage bytes randomly to both the body and the key table,
to disguise its true location, and it randomly alters the order
in which they are added to the file. If relocation data exist
at the end of the file, then the virus moves the data to a
larger offset in the file, and places its body and table in the
gap that has been created. If there are no relocation data at
the end of the file, the virus body and table are placed here
(see Figure 2).

STONEFISH

The convoluted code of the virus makes it easy for analysts
to overlook one fundamental feature of Efish: the .A and .B
variants are ‘slow polymorphic’ viruses. This term means

o

VIRUS BULLETIN

original host infected host

.reloc .reloc
. \ PADDING .
relocations PADDING
v PAD
\ PAD
\ PAD
\ PAD
\ PAD
\
\
relocations

Figure 2.

that the polymorphic decryptor is generated only once in a
while, and the same copy is used in the infection of several
host programs. In the case of Efish, the decryptor is
generated when the standalone sample first runs, before it
starts looking for hosts to infect. Additionally, the
decryption key, encrypted virus body and layout of the
virus segment containing the key, body and random
padding, are also generated anew only when the standalone
sample starts.

Therefore, all detection methods, whether based on
decryptor parsing, emulation, or x-raying of the virus body,
must be tested carefully against a range of samples
generated from several runs of the virus.

So long, and thanks for all the ...

W32/Chiton variant

Type: Memory-resident parasitic
appender/inserter, share crawler,
slow polymorph.

Infects: Windows Portable Executable files.
Payload: None.
Removal: Delete infected files and restore

them from backup. Restore registry.

FEATURE 1

TESTING HEURISTIC DETECTION
IN A REAL-WORLD SCENARIO

Andrew Lee
ESET LLC, USA

“Statistical thinking will one day be as necessary for
efficient citizenship as the ability to read and write.”
H.G. Wells (1866—1946).

The results are often published of anti-virus product tests
that have no scientific basis, have seriously flawed premises,
or demonstrably incorrect methodology. Worse, some tests
have all of these faults.

Unfortunately, this is often true of tests conducted by
popular computer magazines, whose reviewers seem to
think that testing against “a few samples we collected from
the Internet and our email” constitutes a valid test of an
anti-virus product’s detection capabilities. Sadly, it has also
been true of some of the tests conducted by recognised AV
testing bodies for publication by such magazines — whose
interpretation of the results has been wildly misguided.

Reviews in consumer magazines are far more widely read
than those in anti-virus industry journals and, in general,
their readers are not qualified to understand the
(in)significance of the test results. As a consequence, the
public’s confidence in anti-virus products is at stake.

A classic example, circa 2000, is that of CNET’s testing
utilising the infamous Rosenthal Utilities (RU). The
Rosenthal Utilities generated benign (i.e. non-viral) files,
the data part of which contained a portion of a virus. The
executable part displayed a message on the screen. It
should have been obvious that the detection of any
RU-generated file constituted a false positive. However,
CNET rated the products in the test according to their
detection of the RU files. Two years later, CNET was not
only still making the same mistake [1], but compounding it
by altering real viruses such as VBS/Loveletter (i.e. creating
new viruses) and trashing products that ‘failed’ their tests.
Eventually, partly due to pressure from the industry [2, 3],
CNET phased out the use of RU test files.

THE UNDETECTABLES

Particularly misunderstood, and consequently frequently
maligned, are the heuristic capabilities of anti-virus
products, the testing of which has been woefully inadequate
in almost every case this author has seen. This article aims
to discuss a scientific basis for real-world testing of
heuristics-based anti-virus products, but will begin by
describing more general test methodology.

Vb

SCIENTIFIC TESTING METHODOLOGY 101

Good testing will aim to prove a hypothesis, will fully
define its premises and methodology, and will note any
limitations and special considerations.

When comparing products that have different features, it
should be stated clearly which features are being tested, and
whether the features are common to all products. As far as
possible, reviewers should test like against like. Where the
testing methodology is likely to have an effect on the
product’s performance (for instance, testing ‘best settings’
or default settings), this should be indicated.

Scoring, if any, should reflect only the common features
tested — any extra features should either not be scored, or
should be scored separately. Any weighting should be
clearly defined, and the raw results should be made
available. The following are essential to all tests:

e Statistical integrity, using recognised methods.
* Full documentation.

* Presentation of results that arise from scientific analysis
of the test data, rather than a subjective view.
(It is astonishing how often the final ‘score’ of a
product bears little resemblance to the test data).

* The availability of full sample sets to the product
manufacturer and independent bodies (the latter of
whom must have the ability to verify any results after
the fact).

All too often sample selection is seriously flawed, leading to
incorrect test results. The worst mistakes include testing
against unreplicated (or non-replicable) files, altered files or
renamed files (the latter can be an issue, for instance, if
scanning by extension is default, and the test is against
default settings).

The size of the sample set is also an issue. Testing products
against two or three files will prove almost nothing about
the detection capabilities of a product — the smaller the
sample size, the greater the likely error. However, there is an
interesting paradox here. In virus detection terms, the
statistically significant portion of the overall sample set
(every virus ever written) comprises less than five per cent
of that set. The majority of viruses exist only in the ‘zoo’
collections of the various AV companies and related labs.

For testing purposes those viruses that appear on the
WildList are more significant than those that appear in zoo
collections. Furthermore, there are two levels to the
WildList: the top list, which constitutes viruses that have
been reported by two or more WildList reporters, and the
supplemental list, where only one reporter has submitted a
sample. A sample of a virus with only one report carries
only a little more statistical weight than a zoo virus.

VIRUS BULLETIN

There is little agreement on what constitutes a zoo sample
set, and therefore it is likely that most testers will use
different test sets (there are frequent cases of tests against
“files we found in our email”’), which introduces biasing
error. It is also quite possible, given the huge number of new
samples each month, that there are statistically significant
amounts of junk in many zoo sets. Amongst the junk is a
large amount of ‘grey’ material. These may be files that are
dropped by a virus (for instance a log file) or files that are
used as part of an infection sequence. There may be
damaged (non-replicative) files, Trojans, jokes, intended
viruses, clean files (which includes the non-viral files
dropped by a virus), old files that won’t run on modern
systems, and any amount of other ‘noise’ [4, 5].

This, and a lack of agreed definitions about what should be
detected or reported, means that testing is increasingly
difficult to perform correctly — certainly in terms of the
statistical implications.

It is as important to know why a product failed a particular
test, as it is to know that it failed. If the failure was as a
result of flawed test design, it should be possible to prove
this from the test documentation. The documentation should
be written prior to testing, and should define hypotheses and
include the full methodology. Any deviation from the
documentation in testing should be noted and justified.

Scoring calculations and formulae should be stated and
should be demonstrably linked to the test hypotheses. Any
score weighting should be explained fully and justified.

Product failures that fall outside of the stated premises
should not be factored into the final scoring. For instance, if
a product has a stability or installation problem, and neither
the test hypotheses nor premises refer to these, the fault
should not be counted as a failure. Where the product
cannot be tested because of these problems, it should be
noted that the product was excluded on this basis, but no
failure rate should be given. Failures in individual
polymorphic virus sample sets should show as a percentage
of that discrete set (usually >1000 replications per sample),
not as a percentage of the overall detection rate, or bias will
be introduced.

Scored results should be differentiated according to each
hypothesis, and if an averaged score is calculated, the
method of its calculation should be stated.

DEFINING A TEST SCENARIO FOR
HEURISTIC DETECTION SCANNING
This is not intended to form an exhaustive methodology, nor

does it claim to be the best test scenario for testing heuristic
product capabilities; rather it will provide a basis upon

which a more thorough methodology could be built.

VIRUS BULLETIN

To truly test heuristic detection, the ideal sample set would
constitute viruses that are unknown to the product at the
time of the test. It is possible to test heuristics against a
larger sample set, such as the WildCore, by removing the
product’s update files (assuming the product works in

that way).

A better way would be to ‘freeze’ a product in time (i.e. not
update it for a period), then test it against viruses that
emerge in the period between freeze and test. Heuristic
capabilities are usually as frequently updated as more
conventional detection, so testing against very old (weeks or
months) versions of a product will not give a true indication
of its capabilities. Ideally, the product on test would be the
latest version, without signature updates.

SAMPLE VERIFICATION

The virus sample set must be composed only of verified,
replicated samples. The only valid proof that a file is viral is
its ability to replicate (ideally to a second generation — but a
single replication will usually qualify, with the exception of
polymorphic sets).

Using an AV product (or group of products) to determine
whether or not something is a virus and perform selection of
a sample set is an invalid methodology because neither its
error rate, nor its hit rate are statistically determinate. If a
test is carried out with un-replicated samples (or
assumptions are made about their viability by inference),
there will be no scientific basis to the test. Unfortunately
there are many cases of tests in which a ‘black-box’ sample
selection is combined with no documentation and no
availability of the samples for post-test verification.
Especially where sample sets are small, this sort of problem
can significantly bias the test results.

PARAMETERS AND HYPOTHESES

Regard should be paid to the default operating mode of the
product. For instance, some products have a more aggressive
heuristic detection when scanning mail streams (POP3 and
SMTP) than in a resident scanner. If this is the case, the
most ‘real-world’ scenario will be to use the correct scan
component in its default setting, or a command line version
of that scanner with equivalent switches enabled (if available).

Example hypotheses for heuristics testing are as follows:

1. A heuristics-enabled anti-virus scanner will pick up
>0% of viruses without the need for updating its
signature-based detection.

2. The higher the percentage the better the heuristic
analysis can be judged to be.

3. Heuristic analysis detection will not significantly
increase the incidence of false positive detection (it
may be useful to define this as a percentage, but this is
not always necessary).

Example premises:

e Heuristics mitigate a degree of risk of being infected
with new viruses.

e A heuristics-enabled scanner will give a better than
zero (i.e. better than non-heuristic products) chance of
detecting a new or modified virus and protecting
against it.

CONTROL TESTS

It is a useful demonstration for each product to be re-tested
against the same sample set (e.g. full [tW set) with the full
product update at the test date.

The purpose of this is to demonstrate whether, under normal
operating and updating conditions, detection would have
been available against the sample set.

This test has a key statistical implication. The failure rate
of the product against the sample set in its fully updated
state is an inference statistic of the overall failure rate
against the full ItW test set. The failure rate in the heuristic
test is not an inference statistic against the entire ItW test
set, i.e. it is not correct to say that the failure rate (of
detection) against the entire parent set (WildCore) would be
the same as against the update frozen heuristic test set
(unless the full WildCore test set was being tested entirely
heuristically — without any updates), because detection
should be available for pre freeze ItW samples. Gaining the
correct failure rate inference statistics is critical to the
soundness of the test result.

Ideally, a full test of the updated product against the ItW
sample core would be carried out, but the full update
detection test against the post freeze sample set is a sound
inference statistic as long as the sample set is statistically
significant (i.e. at least 10 per cent of the size of the parent
set — again expected error rates should be calculated).

Ideally, a heuristic approach will maintain a zero per cent
false positive (FP) rate as well as a zero per cent false
negative (FN) rate. The clean sample test will determine
a failure rate.

In this case, the hypothesis does not require a zero per cent
FP rate, however, a statistically high FP rate is undesirable,
and can be used as a measure of misdirected heuristic
aggressiveness.

It should be noted that some test scenarios, for instance,
pop3 or SMTP traffic, can have a higher suspicion value

o

attached to any executable code that is transferred, and false
positive rate is unlikely to have direct negative impact on
the system stability or customer reaction — but this is no
reason not to test for FP. (A false positive in an on-access
[memory resident] scanner can have serious implications,
particularly for beleaguered corporate support technicians,
and it is usual to have a less aggressive heuristic default [if
any] set for this reason.)

Ideally, this control set should be an order of magnitude
larger than the viral sample set, preferably an order of
magnitude larger than the parent set. In the case of any false
alert the file alerted against should be recorded, and copies
of the file made available to the product manufacturer.

It should also be noted whether the FP was generated
against a specifically crafted test file (some testers use
denatured or damaged viruses or files deliberately created to
look suspicious), or against a ‘normal’ file that would exist
in a standard system. Ideally, failures against such
specifically created suspicious files should be noted as a
separate statistic, or simply not recorded; after all, we are
discussing real-world scenarios.

An ideal clean file control set will take the form of a
statistically valid set of verified clean files found in normal
end-user systems.

METHODOLOGY

As mentioned briefly above, there are two tests that can be
carried out in terms of heuristic capabilities, and it is
important to state which is being undertaken. The first
measures the product’s capability without update over time,
and the second measures its capability against specific new
malware as it is released.

The first test is likely to show a significant decrease in
detection over time, as new types of virus are encountered
and, while it is perhaps an interesting test, the results are
largely irrelevant, as a correctly installed product (and
therefore its heuristics) will be updated — a fact that this
test necessarily ignores. It is unlikely, in any event, that
evaluation of heuristics on a product that is more than
three months out of date reflects the product’s actual
capabilities.

In the second (and arguably more valuable) test the update
freeze point is important, first because each sample must
be new for each product, otherwise the heuristics are not
being tested, and secondly, because the product should be
the latest available to the public before the outbreak of the
malware. Most products update automatically every hour,
or at least daily, so the test should not be performed using
a product that is significantly older than this (say, not older
than 12 hours).

VIRUS BULLETIN

STATISTICAL IMPLICATIONS

Testing heuristics will naturally give some degree of bias
because the test set is not fixed. If the test is carried out
with a different update freeze, or an expanded sample
set, bias will be lesser or greater. For this reason, two
identical test scenarios using different freeze points and
post freeze sample sets will be likely to produce
significantly different results.

Assumptions about the overall performance of a product
can only truly be made over a long period of time, with
repeat tests. This would provide a mean average of
performance. A single update — for example, a day later than
the original update freeze (to detect the first virus in a new
family) — may skew the result significantly if, as in the case
of the Netsky and Bagle families, many variants are
subsequently released (a modification of a known virus
should be easier to detect heuristically than a totally new
sample). A wider diversity of families appearing within the
post freeze sample set would reduce the detection rate
across the whole product range.

It would be nearly impossible to create a totally sound
model for heuristic testing, as it would require a full test of
every available post update freeze sample set against every
possible update freeze point. Having said that, it is possible
to create a model that does give a statistically valid result

— if sufficient scientific rigour is applied, and the results are
expressed in non-absolute terms.

REFERENCES

[1] A CNET review (via techrepublic) demonstrating
flawed methodology, http://techrepublic.com.com/
5102-6270-1043870.html.

[2] In 2000, members of the AV industry, led by Joe
Wells, wrote a public letter to CNET, denouncing its
testing methodology. See http://www.nod32.com/
news/joe_wells.htm.

[3] A response to the May 2002 CNET test can be found
at http://www.nod32.com/news/cnet_zdnet.htm.

[4] Bontchev, V., ‘Analysis and Maintenance of a Clean
Virus Library’ available online at
http://www.virusbtn.com/old/OtherPapers/VirLib/.

[5] Kaminski, J., ‘Malware Evolution As A Cause Of
Quality Deterioration Of Anti-Virus Solutions’, in
U.E. Gattiker (Ed.), EICAR 2004 Conference
CD-rom: Best Paper Proceedings, Copenhagen:
EICAR e.V.

[6] Real Time WildList, http://www.wildlist.org/
WildList/RTWL.htm.

o

10

VIRUS BULLETIN

FEATURE 2
MALWARE IN A PIG PEN - PART 1

Martin Overton
Independent Researcher, UK

PIG TALES

It is often stated
that pigs are very

intelligent animals
— more so than
dogs and cats. In
fact, pigs are
considered to be
the fourth most
intelligent animals
(excluding
humans) on the
planet [1]. Only chimpanzees, dolphins and elephants (in
that order) rate higher in the intelligence stakes.

This article will discuss the use of the SNORT Intrusion
Detection System (IDS) with a twist — using it to detect
malware by employing various signature creation techniques.

For the uninitiated, SNORT is an IDS that works on
Windows and UNIX systems and is free (apart from the
hardware and manpower costs), very flexible and widely
used and respected.

WHY USE AN IDS TO CATCH MALWARE?

Why use an IDS to catch malware? Well, why not?
Currently I’m using Bayesian filtering to catch malware too
— with great success. [am not saying that virus scanners are
useless, or that the use of an IDS is a better method. My
reasons for using an IDS to catch malware are as follows:

» Fast-moving threats require quick (and sometimes
‘dirty’) detection methods.

* Most malware threats that cause problems are
network-borne, and therefore an IDS is a suitable tool.

* Many of the signatures I use are created before some (if
not all) AV companies have detection capabilities for a
new breaking threat.

e Tam a great believer in defence-in-depth and
multi-layered defences against malware. Using an IDS
as well as virus-scanning tools offers better overall
coverage for a network than merely relying on one or
more virus scanners.

e Using an IDS to detect malware propagating across
your network means that you have the SOURCE IP

address, which will allow faster resolution and
clean-up. This is particularly important with
mass-mailing worms that forge mail headers as well
as fast-spreading/attacking network worms such as
Nimda, Slammer, Blaster, etc.

There are other reasons, but in order to list them all this
article would need to be several times longer.

FIRST, CATCH YOUR PIG!

You can download, catch and install your pig (SNORT), as
well as find more details about its habits, needs, feeding,
care instructions and its preferred stabling (most UNIX
flavours as well as Windows) at http://snort.org/.

Installation on UNIX is very straightforward; even on
Windows only the additional step of installing PCAP
(available at http://winpcap.polito.it/) is required. All other
parts, such as reporting, database storage of alerts and
management tools, are optional extras.

“These rules are going away. We
don’t care about virus rules any
more.”

THIS LITTLE PIGGY CAUGHT MALWARE

When I was first introduced to SNORT I was intrigued to
find that, from the early days, SNORT was supplied with
a set of virus detection rules (a signature/rule file known
as ‘virus.rules’) which were useful — however, some time
ago the following was placed in the virus.rules file:
“These rules are going away. We don’t care about virus
rules any more.”

So, many security specialists who used SNORT because it
could be used to detect viruses felt somewhat aggrieved that
their favourite animal could no longer sniff out new
malware. As usual, just as I started to look at using a new
tool to detect malware the vendor dropped the very ‘feature’
that drew me to it in the first place. It seems to be the story
of my life!

What could be done to re-educate our pigs? Since no one
else (at the time [2]) seemed to be creating rules/signatures
for SNORT to detect new malware, I took it upon myself to
learn how to create them and make them available to
like-minded security professionals.

SNIFFING OUT THE TRUFFLES/MALWARE

So, what can you do to re-train your piggy to sniff out the
malware travelling across your networks?

o

A couple of years ago I decided to try to use SNORT to
catch new malware. I installed PCAP and SNORT onto a
Windows box (I have also installed it on Linux) along with
the nice front-end known as IDScenter from engage security
[3], and fired the pig up. Then I installed ACID [4], which
required a web server (Microsoft I1S or Apache), MySQL [5]
and PHP [6].

Next came the difficult bit: how to create SNORT
signatures, especially for new malware.

EENY, MEENY, MINEY, MO, HOW TO
CATCH A MALWARE USING SNORT

Take your freshly caught malware sample, open it in a hex
editor (if it is a binary sample) or a text editor (if it is still
MIME-encoded in an email). Now examine its entrails and
see what they can predict for its future:

“... I see a teenage nerd, hunched over his/her computer
in a room painted entirely in black. Wax-gnarled candle
stubs burn fitfully, casting a spectral glow over the
proceedings and all the while the teenager is muttering
incantations in C/C++, threatening to put some hex on

”

you ...

A word of caution is needed here: this is not a task for

the general end-user population. Only trained and
knowledgeable staff who are used to dealing with, working
with and handling live malware samples should attempt this
— preferably on a dedicated system that is not networked,
just in case the unthinkable should happen and they should
accidentally launch it!

If you cannot justify a dedicated PC, you could use VMware
instead (remember to disable network support in the virtual
machine that you use).

Unless the malware under the knife is polymorphic,

pads itself out (with random garbage instructions/code)

to fool MDS5 hashes, or is encrypted (such as in a
password-protected zip file), only a single signature will
usually be required to detect it — more will be required if

it spreads using other vectors, such as email or peer-to-peer
(P2P) networks.

FIRST TAKE YOUR MALWARE ENTRAILS

Let us look at W32/Netsky.p@MM [7] as an example of a
typical modern email-based worm that also travels via P2P.
How do I create signatures to detect it?

First I find out whether the malware sample is static by
hashing (MDS5 or SHAT1) all the samples I have of it. This
may also require me to decode the attachments if they were
MIME-encoded when received and perform the same steps

VIRUS BULLETIN

on the decoded attachment. If they are zipped, I must
unzip them and repeat the steps again on the unzipped,
decoded samples.

MIME IF | HAVE A PEEK?

Netsky.p is a static binary image, which means that the
MIME-encoded binary image is also static. The next step is
to view the sample in a hex editor and select a suitable
MIME string to be used to detect the worm when it arrives
via email.

A suitable string should be available within the first 30 lines
of the MIME-encoded attachment in the email. Try to find a
line that is complex, not one that contains mainly ‘A’s, as
otherwise the rule/signature will trigger on perfectly
harmless and uninfected email traffic. I usually select at
least one full line (72 characters, although sometimes I will
use over 100 characters) to ensure that the chances of false
positives/negatives are minimised.

Once a likely MIME signature string has been found, this is
tested in a simple virus scanner which was created for
testing the suitability of SNORT signatures. This scanner —
let’s call it ‘MyScan’ — is then run against all captured
samples of Netsky.p.

I also test the ‘new’ signature against earlier members of the
same malware family to try to ensure that they will not
trigger a false alarm. I also check all the existing signatures
in the ‘MyScan’ database against the new variant — again,
this is for false positive testing.

Once the new signature(s) have been tested and any issues
ironed out, they are placed into a rule set known as
‘malware.rules’, which I maintain. These are then made
available to other security professionals and researchers,
including AVIEN members.

The signature below is one I created and has been very
successful. At the end of August 2004 over 3,800 samples
have been detected coming to my (personal) mail server
from infected hosts.
alert tcp SEXTERNAL_NET any -> SHOME_NET any
(msg:”"W32.NetSky.p@mm - MIME”; content:
“X7s0IUEAR4s3r1f/E5UzwK51/£4Pd0/+D3UGR/83r+sJ/
g8PhKLw/vI9XVE9T”; classtype: misc-activity; rev 1;)
Let’s break the signature/rule down into its component
parts.

The first part is:

alert tcp
This tells SNORT to send an ‘alert’ when the signature is
matched/triggered — when it sees a ‘tcp’ packet (you can

also test UDP and ICMP traffic too) that contains the
signature for the malware.

o

11

12

VIRUS BULLETIN

The next part is:
$EXTERNAL_NET any -> S$SHOME_NET any

This specifies that we want SNORT to trigger only when the
traffic is coming from an IP address that is not one of ours
(on any port), but is being sent to one in our IP address
range (again, on any port).

SEXTERNAL_NET and $SHOME_NET are user-defined
variables. You can use the keyword ‘any’ in place of them to
allow the rule to trigger on traffic originating on your
network as well as traffic from outside your network
address ranges. You can also tie down the detection to
specific ports, such as ‘25’ or ‘110’, instead of using the
‘any’ port keyword.

The next part is:

(msg:”W32.NetSky.p@mm - MIME”; content:

This tells SNORT to send the alert text
“W32.Netsky.p@mm - MIME” to the console, log or
database (whatever you use) when the following malware
signature (MIME-encoded) is found in the TCP packet:

“X7s0IUEAR4s3r1f/E5UzwK51/£4Pd0/+D3UGR/83r+sJ/
g8PhKLw/vIXVEIT”

The final part is:
; classtype: misc-activity; rev 1;)

This tells SNORT to log the signature match as the
‘classtype’ of ‘misc-activity’. This could be any registered
classtype, so you could set the classtype as ‘malware’ if you
prefer. The last part of the signature/rule is the ‘rev’ statement;
this is used to allow revision control so that you can keep
track of how many changes you have made to a rule.

BIN HERE BEFORE?

The same steps are followed when rummaging around in a
binary sample (EXE, COM, SCR, etc.) looking for a
suitable hex signature which can be used to detect the worm
as it travels across the network in its P2P (file sharing)
mode of operation.
alert tcp SEXTERNAL_NET any -> any any
(msg:”W32.NetSky.p@mm - SMB”;content:”|4E EB 87 89 77
7E EO 83 Bl 94 94 CC E9 F5 97 97 53 95 5C 95 AF C6 40
C5 CA AC 25 8E 47 F1 5D 0B|”; classtype:misc-
activity;rev:1;)
A suitable signature is usually at least 32 ‘hex’ characters,
each separated by a space. Again, in some cases I will use a
longer signature instead.

As you can see, the main difference in the ‘content’ section
of the signature is that hex signatures must also be prefixed
and suffixed by the ‘I’ (broken pipe) character inside the
double quotes, whereas MIME signatures are enclosed only
in double quotes.

MIME THE BIN

For the more adventurous security professionals out there,
you can have multiple ‘content’ sections within the same
rule, and you can even have both binary (HEX) and text
(MIME) signatures in the same rule — and lots more besides,
but that’s another story.

BRINGING HOME THE BACON

The signatures I create are available to all Virus Bulletin
subscribers (and other selected parties) on my home
webserver at: http://arachnid.homeip.net/snort/index.htm.
You will need to use the following login credentials (they
are case-sensitive):

ID = VB2003

Pass = worm!charmer

Any assistance is very welcome — either by creating and
sharing your own rules or by reporting success or issues
with the rules I have created.

This concludes part one of this article as I have covered
‘simple’ signatures for non-polymorphic or otherwise
non-obfuscated malware. The next part of the article will
deal with how to write rules/signatures to detect more
difficult (obfuscated and encrypted) malware, as well as
looking at the use of PCRE (Perl-Compatible Regular
Expressions) instead of static binary or MIME strings, in
addition to multiple ‘content’ rules.

For those who are interested, I use my own SNORT rules, as
well as running virus scanners, my Worm Charmer, various
honeypots, Bayesian filtering, etc. So, you could say that I
eat my own pig food.

NOTES AND REFERENCES

[1] Source: http://www.veganpeace.com/AnimalFacts/
Pigs.htm.

[2] Now there are several individuals and groups, most
notably the maintainers of Bleedingsnort.

[3] http://www.engagesecurity.com/.

[4] http://www.andrew.cmu.edu/user/rdanyliw/snort/
snortacid.html.

[5] http://www.mysql.com/.

[6] http://www.php.net/.

[7] First seen 21 March 2004. See http://vil.nai.com/vil/
content/v_101119.htm for details.

Photograph of Luther the pig courtesy of Farm Sanctuary,
http:/fwww.farmsanctuary.com/.

o

TECHNICAL FEATURE
HASH WOES

Morton Swimmer and Jonathan A. Poritz
IBM Research GmbH

In a rump session of the August 2004 Crypto conference,
where attendees have the chance to give informal
(non-refereed) presentations of works in progress, a group
of Chinese researchers demonstrated flaws in a whole set of
hash functions and the entire crypto community was abuzz.
In this article, we will clarify the situation and draw lessons
from this incident.

First, we need a little background.

THE NAUGHTY BITS

A hash function £ is an algorithm which maps a message
(bit string) x of arbitrary length to a digest A(x) of a fixed
length — a property we call compression. For reasons of
practicality, the digest s(x) must be easy to compute for
any message Xx.

One example is the common CRC-32 function. In
non-malicious environments, this compression alone can
be useful — for example to detect transmission errors on a
noisy channel — but in security applications we often use
the hash digest as part of an authentication or other
cryptographic protocol.

A trivial (but very widespread) kind of authentication using
hash functions is the practice, within the open source
community, of multiply-posting ‘md5 checksums’ of
software releases, so that a prospective downloader can
compare the checksum (actually the hash digest) of the
binary which they actually download to the value they have
found on various public websites. (Hence a hacker who
wishes to Trojanize a software package would have to get
his version onto the public servers and also get the
corresponding hashes to all sites which post these
authentication hash values.)

More sophisticated uses of hash functions include various
(standardized) digital signature schemes, as well as a
cute technique to make what are called ‘non-interactive
zero-knowledge proofs of knowledge’, which are
essentially certificates which prove that the issuer has
certain knowledge, without revealing all of the details of
that knowledge.

CRITERIA

For such security applications, one needs more robust hash
functions which have additional properties. We will describe

VIRUS BULLETIN

the three most common criteria from [1]. (There are other,
more elaborate, criteria we could have used, but such
precision is not needed for this discussion.)

For an unkeyed cryptographic hash function 4, we generally
require one (or all) of the following characteristics:

PRE: Pre-image resistance means that, for essentially
all given digests y, it is computationally
infeasible to find any input x which hashes to
that value (so y=h(x)). This means we cannot
find an inverse function to % that is
computationally feasible.

2PRE: Second-pre-image resistance means that it is
computationally infeasible to find a second
input x “# x which has the same output
h(x) = h (x°), given that we know x (and
therefore the output h(x)).

COLL: Collision resistance means that it is
computationally infeasible to find distinct
inputs x # x " that hash to the same outputs,
ie. h(x)=h(x’).

Typically, we assume ‘computationally infeasible’ to mean
no better than the brute-force approach, although in formal
cryptography this relates to the idea of ‘polynomial-time’
algorithms (or, rather, algorithms which are not
polynomial-time).

A candidate hash function 4 which fails to satisty PRE

or 2PRE is not likely to be useful in security applications:
for example, both such failures allow an obvious
denial-of-service attack on the simple authentication
mentioned above, while failure of PRE usually allows
digital signatures using % to be completely forged.

COLL is rather more subtle. If, for example, we have found
colliding inputs x and x”, and we can get an automated
signer to sign A(x), then we can later present the forged x~
instead as the signed message; of course, this results merely
in a denial-of-service attack (again), unless we have fine
control over the collision production.

In fact, there will always be collisions, due to the
compression factor of the hash function. What we require
of a secure hash is not that there are no collisions, but that
it is not possible to generate many collisions with a
reasonable amount of computational power.

HISTORY

Modern cryptographic hash history starts with Ron L.
Rivest’s creation of the MD4 hash algorithm in 1990, which
was meant to be an improvement on the slow MD2
algorithm. However, very soon it was suspected that MD4

o

13

VIRUS BULLETIN

was not secure enough and in 1992, Rivest supplanted it
with MDS5, which contained an extra round in the three
rounds of the MD4 compression function and changed the
functions in some of the rounds. This and other
modifications were meant to make the algorithm less
symmetric and therefore more secure.

Soon after, MD5 was extended to become HAVEL.
Likewise RIPEMD, which appeared a few years later,
was also based on MD4.

MD4 BROKEN

Apparently, the suspicions surrounding MD4 were well
founded. In 1992, collisions in some parts of the MD4
algorithm were found and by 1995, Hans Dobbertin had
found a method of producing meaningful collisions in

just a few seconds using the computers of the day [2]. By
1998, Dobbertin had found a way of inverting a reduced
strength version of MD4. This means that MD4 completely
fails COLL, and its status for PRE and 2PRE is considered
essentially broken.

Meanwhile, MD5 was under attack as well. After some
successful attacks against the compression function in
MDS5, Dobbertin extended his MD4 attack to MD5 and
was able to produce collisions by modifying the algorithm
very slightly.

RIPEMD was also attacked by Dobbertin and collisions
were found in a reduced round version of it. In response,
the algorithm was modified and RIPEMD-128 (128 bits)
and RIPEMD-160 (160 bits) emerged — these are included
in the ISO/IEC DIS 10118-3 standard, which was finalized
this year.

Meanwhile, in 1993, NIST (National Institute for Standards
and Technology) published the Secure Hash Algorithm
(SHA, now usually referred to as SHA-0), which was meant
to be used with NIST’s signature algorithm DSA. Like so
many others, it too is based on the now thoroughly broken
MD4, so it was little surprise when, in 1995, a modification
appeared: SHA-1.

Not only did SHA-1 produce a 160-bit hash code (over

the 128 bits of MD4 and MDY), but it included a unique
expansion function before the compression, which is
attributed with providing greater security. SHA-1, and its
sisters, SHA-256, SHA-512 and SHA-384 are now also
included in the ISO/IEC DOS 10118-3 standard and are the

only hash algorithms allowed by NIST’s FIPS 180-2 standard.

THE DOWNFALL OF MD5

After Dobbertin’s success with breaking MD4, the focus
shifted to breaking MDS5 security. A website intending to

organize a distributed computer attacking MDS5 (as was
used in the RSA challenge) was created at
http://www.md5crk.com/.

While that effort was focused on a brute-force search for
collisions, the more interesting problem of finding a less
computationally exhausting attack on the complete
algorithm remained elusive. That is, until the presentation
given at this year’s Crypto conference by Xiaoyun Wang,
Dengguo Feng, Xuejia Lai and Honbo Yu [3], all of Chinese
research institutes or universities.

Using a multi-processor IBM pSeries machine, Wang et al.
claim to be able to calculate a collision in just over an hour.
For the HAVEL-128 extension to MDS5, they were able to
calculate collisions in 26 calculations, as opposed to the
brute-force approach requiring 2%, In fact, they claimed
that, with their method, collisions can be found by hand
calculation for MD4.

Next, they showed two collisions in the original RIPEMD
algorithm and finally they mentioned that collisions could
be found in the original SHA-0 algorithm in 2% calculations,
as well as in the HAVEL-160.

Unfortunately, their presentation (and a paper on the e-print
archive site of the International Association for Cryptologic
Research [3]) did not provide very much detail about their
method. However, they made a convincing argument and

it is likely that Wang et al. will publish a more detailed
paper in the near future so that the crypto community can
evaluate it.

Although eclipsed somewhat by the Wang, et al.
presentation, Antoine Joux (whose ideas the Chinese team
used in their work) announced in the same session of the
conference the existence of a collision in the original
SHA-0 algorithm, effectively lending weight to Wang,

et al.’s similar statement.

Also in the same session, Israeli cryptographer Eli Biham
announced results on the COLL attacks against SHA-1

that he has been waging. So far, collisions have been
obtainable in a reduced round version of SHA-1 (40 instead
of 80 rounds).

DO WE CARE?

For simple applications of hashes, PRE and 2PRE security
is probably sufficient. But before you breathe a sigh of
relief, consider this: it is believed that evidence of COLL
attacks implies that 2PRE and possibly PRE attacks are also
likely to be imminent. This seems to be borne out by our
experience with MD4, where first partial, then full COLL
attacks preceded useful COLL and then partial PRE attacks.
If MD4 were still of interest, there might be a successful
PRE attack by now.

o

But since COLL attacks do not automatically imply PRE

and 2PRE attacks, we may be OK for simple uses of hashes.

Using MD5 hashes for file integrity or document signing
applications will still provide a good level of security until
useful collisions can be found.

Applications like SSL may also be secure enough because,
while an attacker might try to have a certificate authority
sign one version of a certificate and then use its collision
later to forge the site’s certificate, in practice, signing
authorities provide part of the data that then gets signed,
which greatly limits the usefulness of a COLL attack in
this instance.

However, more complicated cryptographic protocols may
rely specifically on a hash function being collision-free.
This is apparently the case with ISO/IEC 18033-2 [4],
which is still in draft status. These applications will have to
look for more secure hash functions.

CONCLUSIONS

MDS5 is now considered broken. We can expect folks to be
moving away from it in the near future, as the opportunity

arises. The same goes for SHA-O, RIPEMD and HAVEL-128.

SHA-1 is now also in doubt, as the crypto community
generally believes that COLL attacks are quite possible in
the near future, and so also may follow 2PRE and PRE
attacks. Thus it seems prudent to replace SHA-1 with
SHA-256 or better in security-critical standards, in
software, and even in actual digital data which must remain
secure for some time.

Furthermore, SHA-1 is hardwired in a whole host of
internationally-recognized standards (such as NIST’s
official digital signature scheme, most of the work of the
Trusted Computing Group, etc.), and implementations of
all such standards must be considered somewhat suspect
unless and until each one is examined by experts and
concluded even to be safe with a possibly COLL-failing
hash function.

Because all of the hash functions we have discussed are
based on MD4, it is tempting to lay the blame for this mess
on this single fact. However, it is important to note that it
has not been proven that COLL-resistant hash functions are
possible at all. Also, the entire field of hash functions is at
best a black art and is based on the best judgement of a few
very talented individuals.

LESSONS

Even a perfect hash function only ever has ‘as much
security as’ half as many bits as its digest size (this notion

VIRUS BULLETIN

can be made precise in cryptography). So, in fact, we were
already at risk before this recent discovery of flaws in MD5
and SHA-1, every time we used such a hash in a protocol
with a keyed cryptographic primitive whose key size was
more than half the digest size — at risk in the sense that we
were getting less security than we thought.

Thus one lesson the current situation should teach us is to
be careful about which hash function we use, even simply
in terms of its digest size.

We should also take from this incident the fact that we
must keep implementations that rely on hash functions
flexible. There must be a simple way to replace broken
hash function code (or simply increase the size of the
digest, when necessary, for a certain number of bits of
security, as just noted).

Furthermore — and just as important — there must be a clear
migration path to the new hash function. Not only must the
hash function be modularized, but the storage available for

the hash code must be expandable. It may also be necessary
to keep the old, defunct hash codes around and space needs
to be allocated for that, too.

Standards bodies should make their designs modular in a
similar fashion, so that any future advances in the
cryptanalysis of hash functions do not invalidate the entire
design, but merely require more powerful hashes to be
plugged in.

Given the pervasiveness of MDS5 usage, it will be interesting
to see how long it takes until we have completely migrated
away from MDS5. There are still some programs in use today
that employ MD?2!

BIBLIOGRAPHY

[1] Menezes, Alfred; van Oorschot, Paul C.; Vanstone,
Scott A., Handbook of Applied Cryptography, 1997,
CRC Press.

[2] Hans Dobbertin, ‘The Status of MD5 After a
Recent Attack’, CryptoBytes vol. 2, no. 2, 1996,
ftp://ftp.rsasecurity.com/pub/cryptobytes/
crypto2n2.pdf.

[3] Xiaoyun Wang; Dengguo Feng; Xuejia Lai; Honbo
Yu, ‘Collisions for Hash Functions MD4, MD5,
HAVEL-128 and RIPEMD’, International
Association for Cryptologic Research, 2004,
http://eprint.iacr.org/2004/199/.

[4] Working Group 2 of ISO/IEC JTC 1/SC27, ‘ISO
18033-2: An Emerging Standard for Public-Key
Encryption’, 2004, available from
http://www.shoup.net/iso/.

o

15

VIRUS BULLETIN

LETTERS

SETTING THE RECORD STRAIGHT ON
KASPERSKY ANTI-VIRUS PERSONAL 5.0

Having read Virus Bulletin’s recent review of Kaspersky
Anti-Virus Personal 5.0 (see VB, September 2004, p.16), I
was dismayed to learn of your reviewer’s concerns about the
product’s update settings. He comments:

“Since updates occur automatically only at three-hourly
intervals, no update is performed by default when a
machine is booted. What is more, there is no provision for
an update on boot. If, for example, a user arrives home from
holiday and powers up their machine, the virus definitions
might be as old as two weeks for up to three hours. Given
some of the fast-spreading worms of recent months this
would be ample time to infect the machine before the update
is triggered.”

I would draw your attention to several points.

1. Although there is no ‘update on boot’ option, the
product maintains its own task list. If a PC is switched
off and misses an update, this is logged in the task list
and the next time the PC is connected to the Internet,
the update will be performed immediately.

2. Kaspersky Anti-Virus Personal can easily be
configured to update hourly.

3. Kaspersky provides updated virus definitions hourly
— far more frequently than other anti-virus vendors.
Even using default settings, Kaspersky customers
are only ever three hours away from a new virus
definition file. This compares very favourably to
products with daily updates (where a user could be
23 hours and 59 minutes away from the next update)
or those with weekly updates (where a user could be
six days, 23 hours and 59 minutes away from the
next update).

In light of the above, I'm sure you would have to agree that
neither your reviewer nor your readers need have
‘concerns’ about the updating provisions in KAV Personal 5.0.

David Emm
Senior Technology Consultant, Kaspersky Lab, UK

VB RESPONDS

As areviewer I tend to be concerned by matters which
might only warrant a disinterested shrug in other circles. I
would be happy to state that any default settings which do
not take advantage of all updates available — and KAV is
admittedly not the worst offender — are of sufficient concern
to warrant a mention. Whether an end-user finds this worrying
is their decision to make, based upon the facts I present.

Matt Ham

MACS AWAY!

In his comment in the August 2004 issue of Virus Bulletin,
David Harley asks: “Are Mac users, especially SOHO and
home users, really better at keeping up with patches than
their PC-using equivalents?” (see VB, August 2004, p.2).

The answer is that Mac users are probably not any better

at keeping up with patches — but then OS X takes care of
all this for you. As far as I (as a fairly long-term OS X user)
am aware, Apple has always made patching a breeze. You
sit at your computer, clicking, pointing, drooling, and up
pops a box saying: “Security Update — please just click the
install button”; minutes later, you have the latest security
update installed.

Not only that, but if you do not install the security update,
you will periodically be harassed until you have done so.
The result: there are not many unpatched OS X machines
floating around.

As far as I can tell, recent versions of Windows XP provide
the same functionality — so why are we not virtually free of
Windows malware too?

Presumably the reason is a combination of the fairly large
number of ‘legacy’ Windows 98, Windows Me and Windows
2000 machines (on which one was forced to search out
security patches proactively, and which thus remain
unpatched) that are in use, and Microsoft’s deliberations
about allowing people with pirated copies of Windows to
install security updates.

One might also consider Microsoft’s vulnerability-to-patch
cycle to be longer than one might hope, but, as far as I am
aware, there are very few pieces of malware that use
‘zero-day’ exploits.

I am a big believer in the philosophy that no operating
system is secure, as long as it has a user in front of it —
however, Microsoft’s previously clunky update procedures,
and the baffling array of different methods for patching
your Linux and BSD machines, make OS X a
comparatively hostile environment for malware.

Other comments in the opinion piece suggest to me

that David is not particularly well acquainted with the
venerable OS X (it is exceptionally difficult to log in as
root unless you are really trying to, for example). I would
suggest David spends more time with it (as I would
suggest to anyone) as it is a very capable, powerful, and
user-friendly OS.

Pete Sergeant
Independent writer, UK

Do you have an opinion to air? Send your letters to
comments @virusbtn.com.

o

PRODUCT REVIEW
MKS_VIR 2004

Matt Ham

mks_vir is produced by Polish anti-virus company MKS.
MKS was originally a one-man operation set up by the
late Marek Sell. Marek was still very involved with MKS
until his death earlier this year. As with many smaller
anti-virus companies, MKS has a solid user base in its
home country and is now taking steps to expand beyond
those borders.

THE PACKAGE

It comes as no surprise that the product was supplied in two
versions. The electronic version was supplied as an English
language version and consisted of the application and
documentation. This could be installed in Polish if required.
The boxed set, meanwhile, was supplied as a Polish
language version.

The boxed version arrived with a number of MKS-branded
goodies: a pen, a coaster, a lanyard, a box of matches and,
most surprisingly, an optical mouse. This amount of loot
indicates that home-users are being targeted.

Documentation and registration for the boxed version was
provided only in Polish. Theoretically, the program can be
installed in English or Polish. However, attempting to install
from the CD resulted in an error message — in Polish.
Although I made the happy discovery that my
understanding of Polish is better than I thought, the review
was performed on the electronic English language version
on Windows XP. The documentation indicates that all
common Windows versions are supported.

An administrator application, mks_administrator, is also
available and was supplied on the CD in the boxed version.
This requires a .NET-capable platform in order to be
installed and operational and .NET is available on the CD.

DOCUMENTATION AND WEB PRESENCE

Documentation for the English version was supplied as a
PDEF. This seemed to be a pretty much direct translation of
the Polish manual, with some interesting, less than perfect
translations. For example, the program is referred to
throughout the documentation as a ‘packet’ rather than a
package. Strange phraseology aside, however, the content is
good. Better still was the fact that the documentation was
rarely needed, since operation of the software proved, by
and large, to be intuitive.

As would be expected from a company that has only
recently started to make serious inroads abroad, the MKS

VIRUS BULLETIN

website is much more sizeable in its Polish version than

in its English version. The main site is located at
http://www.mks.com.pl/, with the English version available
at http://english.mks.com.pl/.

At first glance the site is relatively spartan, with a noticeable
lack of a news section. Rather worse is the fact that at least
one link was found to be broken due to a typographical
error in a URL. Online ordering is not yet available from
the website, although this aspect of MKS’s activities may
become more polished as time progresses. The website
allows contact with MKS support and download of

products and updates — so it is sufficient for most users’
needs. The lack of a searchable virus database is its biggest
flaw in my eyes.

INSTALLATION AND UPDATE

The application was supplied as a 12MB executable. When
launched the first option is a choice of language. After
agreeing to the comparatively short licence agreement the
next step is to input the licence number. Apparently a
holographic sticker should be affixed to any machine upon
which the program is installed — but no such object was to
be found in the boxed version, let alone the electronic one.
Somewhat disturbingly, the boxed version’s licence number
was out of date when received — not an ideal situation.

From here matters become slightly less strange however,
with the choice of user name, installation path and the
choice as to whether program configuration should be
performed as soon as installation is complete. The default
option here is to perform configuration when installation is
complete, and was not changed.

With a few file transfers out of the way, the monitor
configuration application is launched. Here, the on-access
scanner may be activated and various options selected.
There are numerous options here, since the application is

mks_vir monitor, - Configuration gl

= mk l i 1 i
ki monfor Monitor configuration
Scanning
Actions General
Heuristics r " A
Snehines Sound reactions to events (=.g. when & vins is found)
Fepart =
At the system startup -
' Show the monitor window
" Activate the monitar
" Deactivate the monitar
onitar priority
¥ Do not increase the monitor pricrity in the system
Password protection
[~ Protect the moritor configuration with a password

o

17

18

VIRUS BULLETIN

essentially the same as that available for adjustment of the
on-access service within the program. Configuration is
performed through a tree, there being a general root with
scanning, actions, heuristics, archives and reports all
configurable at this stage.

The first option presented is the choice of whether or not
sounds are produced when viruses are detected — an unusual
choice for this stage in the proceedings. The monitor may
not be disabled by users from within this area, although a
check box suggests that this is possible elsewhere.

Next is the more important choice of startup behaviour. The
default is for the monitor to display the configuration screen
at start up — although the monitor may also be activated or
deactivated as startup behaviour. It seems rather odd that the
configuration screen is the default behaviour — since this
will not be required often and I imagine that its presence
will only serve to enrage customers who are in a hurry to
use their machine. Monitor system resource usage is limited
by default but this limitation may be removed here, and
there is an option to password-protect configuration.

Scanning options are comprehensively configurable, with
the default being scanning of all executed and accessed
files, plus those copied or downloaded. All files are scanned,
but this can be changed to a list of extensions (referred to as
‘Hosts’) and exclusions may also be applied. Unusually,
floppy access scanning can be removed independently, and
there is an option to scan floppies during system shutdown.
Oddly, memory and MBRs are not scanned when the
on-access scanner is activated, but this setting can be
changed if required. Finally in this area the detection of
dialers or spyware and adware can be disabled.

The default action of the product on finding an infection is
to ask the user whether to disinfect, delete or rename files.
Information is provided as to whether the relevant action
has been successful. Backups of disinfected files can be
forced. Quarantine settings are also altered here, though the
default settings seem suitably sensible.

Heuristics are enabled by default — though this feature is
accompanied by a warning that heuristics can trigger false
alarms. Heuristic sensitivity may be set as low, standard,
high or very high. Standard is the default and recommended
setting here.

Archive scanning is disabled by default, which is not
entirely surprising: overheads for archive processing can
make on-access scanning of such files prohibitive. However,
with such settings in place recent worms which arrive as
archives will be able to be transferred without interference
and it is perhaps for this reason that mks_vir allows archives
that have been copied and downloaded to be targeted
specifically for archive scanning. With regard to the
overheads, users may be informed if a particularly large file

is about to be processed. The depth of recursion within
archives may also be limited.

Finally in this setup area the report branch offers some
predictable controls. The size of logs is limited by default —
though most users will be hard-pressed to fill a 128kB log
file with infection reports. This is also the area where
infection reports may be inspected.

With the on-access scanner configured, the update settings
are next to be selected. Unusually, the default here is to use
a local repository directory rather than the MKS updates
server. It is also possible to specify the location of this
repository from this dialog. With this configuration
complete, the login details for the scheduler must be set and
then the installation process is complete.

This is one of the longer installation processes I have seen,
since the on-access scanner is fully configured before
installation is complete. The good news is that a fairly
knowledgable user will likely end up with a more suitable
configuration as a result. On the down side, a less
knowledgable user will end up with a massive headache
and, one hopes, change nothing. Both scenarios could be
improved slightly by a few changes to the defaults offered.

Updating was not quite as fast as had been hoped. The
operation was successful, but despite using a locally situated
file repository the process of file transfer was somewhat less
than lightning fast. This may be explained by there being
some obvious file integrity checking going on — both for the
update application and the downloaded files themselves.

FEATURES

Following the installation of mks_vir numerous programs
are available from the start menu. Of these, the anti-virus
monitor, mks_update and quarantine have already been
mentioned. Mail scanner, component registration,
uninstallation and a provision to create a DOS version disk
for mks_vir are also included. This leaves only the

;._F\ mks_update 2004

aptions help closs

-
mnks wvir 4 @
2004
g mks_update application updates all the modules of
mks_vir package and virus defintions Update
ey Installed version
/ mks_vir |06 September 2004 a r

engine [22 July 2004 & mks_upd [12August 2004 b
vitus definitions |05 September 2004 5

Tasks mks_update supparts several server types for updating MKS softwars
- . Choose one of the options belaw,

Server

Reports
Reports. /. Fictocal [Network Neighborhood =] For |
]) Addiess |E \installwintrepozytorium Browse
P /=2
P @ r]
AP
mks_update

o

on-demand anti-virus scanner component for a more
detailed examination.

The main screen when the scanner is launched shows
information on the applications that are currently active and
on version dates for various components. If all is well in
these areas, a green smiling face or a blue information tab is
displayed, while any causes for concern result in a red
warning text. From here, the on-access scanner, mail
scanner, or updater applications may be launched via icons.

General options are also altered in this screen, again from
an icon at the top of the screen. Although they look slightly
different from those in the on-access settings area the
settings here are virtually identical, with only slight
variations in layout and in those options not applicable to
on-demand scans. Once again, the sound effect option takes
pride of place as the first setting to be configured.

Additional options involve the scanning of process memory,
this being noted as slow, and of DBR areas. One nice
feature is that if the scanner has problems with access to
network resources a separate user account can be supplied
to which it will automatically log in. Under what
circumstances this access will return to the user permissions
is not indicated. Presumably there are some potential
security implications to this ability to raise privileges.

By default, suspicious files are sent to MKS, which should
aid with the fine-tuning of heuristics. The problems
encountered with system restore and some infections are
also catered for — an option within mks_vir allows the
feature to be turned off before scanning.

One notable omission is that there is no option to configure
a list of extensions to be scanned on demand — all files are
scanned. This is at odds with the on-access scanner, where
one must assume that all-files scanning may be undesirable
for reasons of overheads. Since exclusions can be specified
on demand, it is easy enough to decide not to scan specific
files — which is, in fact, usually safer than deciding which
files should be scanned and attempting to remember all

the files that should be targeted.

With configuration covered all that remains is the creation
and execution of tasks. All tasks inherit the general
configuration options — so the creation of a target is all that
is required when a task is created afresh. Generic tasks exist
already which cover the usual areas — files, drives and
directories may be chosen for the purpose of user-created
tasks. The ability to adjust scanning parameters individually
for each new task would be a good improvement here.

SCANNING

Scanning was performed on the Virus Bulletin test sets, and
the full scanning results will be available in the November

VIRUS BULLETIN

2004 edition of Virus Bulletin as part of the Windows 2003
Advanced Server comparative review.

Preliminary results were certainly satisfactory on infected
files, although four false positives were noted in the clean
test sets using the default settings. The files alerted on
were all from rather ancient anti-virus utilities which
contain unencrypted strings from those viruses they were
designed to detect. Such false positives tend to be easily
dealt with.

The same scan was performed with the most paranoid
settings of heuristics and both the result and the files that
were falsely detected were identical.

CONCLUSION

One point of interest in mks_vir is the extent to which the
on-access functionality seems to be favoured with more
control options and is selected for configuration during

the installation procedure. This indication that on-access
scans are considered more important for day-to-day
protection is unusual. The default settings for the monitor
are perhaps an area subject to improvements but the general
principle is sound.

Having both Polish and English versions of the package
available for review demonstrated many contrasts in the way
MKS appears in its different incarnations. It was soon
obvious that the English version is not as long-standing as
the Polish version, with documentation and translations
showing signs of imperfection. There were a number of
problems with the boxed version on an English platform.
That said, such problems are among the simpler to deal with
— time being all that is required for developers to overcome
teething troubles and translation issues.

Initial impressions of the underlying functionality of the
product were much more satisfactory. Few problems were
encountered — and those that were encountered, such as
false positives, are the sort of problems to be expected of
products in their first few runs against our test sets. With a
full detection review imminent, it will be interesting to
observe mks_vir, both in the short term and even more so
over the long term.

Technical Details
Product: mks_vir 2004.

Test environment: Identical 1.6 GHz Intel Pentium machines
with 512 MB RAM, 20 GB dual hard disks, DVD/CD-ROM and
3.5-inch floppy drive running Windows XP Professional.

Developer: MKS Sp. z o.0., ul. Fortuny 9, 01-339 Warsaw,
Poland; tel +22 331 33 80; email office @mks.com.pl;

web http://english.mks.com.pl/.

o

19

20

VIRUS BULLETIN

END NOTES & NEWS

SecurIT Summit takes place 18-20 October 2004 in Montreux,
Switzerland. Streamlined conference sessions will offer a variety of
case study presentations, panel debates, interactive ‘think-tanks” and
workshops. See http://www.securit-summit.com/.

RSA Europe takes place 3-5 November 2004 in Barcelona, Spain.
More information, including track sessions and speaker details are
available from http://www.rsaconference.com/.

The 31st Annual Computer Security Conference and Expo will
take place 8-10 November 2004 in Washington, D.C., USA.

14 tracks will cover topics including wireless, management, forensics,
attacks and countermeasures, compliance and privacy and advanced
technology. For details see http://www.gocsi.com/.

The ISACA Network Security Conference will be held 15-17
November 2004 in Budapest, Hungary. Presentations will discuss
the technologies, and the best practices in designing, deploying,
operating and auditing them. See http://www.isaca.org/.

The seventh Association of Anti-Virus Asia Researchers Interna-

tional conference (AVAR2004) will be held 25-26 November 2004
at the Sheraton Grande Tokyo Bay hotel in Tokyo, Japan. For details

see http://www.aavar.org/.

Infosec USA will be held 7-9 December 2004 in New York, NY,
USA. For details see http://www.infosecurityevent.com/.

Computer & Internet Crime 2005 will take place 24-25 January
2005 in London, UK. The conference and exhibition are dedicated
solely to the problem of cyber crime and the associated threat to
business, government and government agencies, public services

and individuals. For more details and online registration see
http://www.cic-exhibition.com/.

The 14th annual RSA Conference will be held 14-19 February
2005 at the Moscone Center in San Francisco, CA, USA. For more
information see http://www.rsaconference.com/.

The E-crime and Computer Evidence conference ECCE 2005
takes place at the Columbus Hotel in Monaco from 29-30 March
2005. A reduced daily registration rate of 150 Euro per delegate
applies until 21 November 2004. For more details see
http://www.ecce-conference.com/.

The first Information Security Practice and Experience
Conference (ISPEC 2005) will be held 11-14 April 2005 in
Singapore. ISPEC is intended to bring together researchers and
practitioners to provide a confluence of new information security
technologies, their applications and their integration with IT
systems in various vertical sectors. Papers for the conference may
be submitted until 1 November 2004. For more information see
http://ispec2005.i2r.a-star.edu.sg/.

The 14th EICAR conference will take place from 30 April to

3 May 2005 either in Malta or in Edinburgh. Authors are invited

to submit non-academic papers, academic papers and poster
presentations for the conference. The deadline for submissions

are as follows: non-academic papers 26 November 2004; academic
papers 14 January 2005; poster presentations 18 February 2005.

For full details of the conference (including imminent announcement
of the location) see http://conference.eicar.org/.

The sixth National Information Security Conference (NISC 6)
will be held 18-20 May 2005 at the St Andrews Bay Golf Resort
and Spa, Scotland. For details of the agenda (which includes a
complimentary round of golf at the close of the conference) or to
register online, see http://www.nisc.org.uk/.

The third International Workshop on Security in Information
Systems, WOSIS-2005, takes place 24-25 May 2005 in Miami,
USA. The workshop will gather academics, researchers, practition-
ers and students in the field of security in information systems and
will present new developments, lessons learned from real world
cases, and provide opportunities for exchange of ideas and
discussion on specific areas. See http://www.iceis.org for details.

NetSec 2005 will be held 13-15 June 2005 in Scottsdale AZ, USA.
The program covers a broad array of topics, including awareness,
privacy, policies, wireless security, VPNs, remote access, Internet
security and more. See http://www.gocsi.com/events/netsec.jhtml.

ADVISORY BOARD

Pavel Baudis, Alwil Software, Czech Republic
Ray Glath, Tavisco Ltd, USA

Sarah Gordon, Symantec Corporation, USA
Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel
Dmitry Gryaznov, Network Associates, USA

Joe Hartmann, Trend Micro, USA

Dr Jan Hruska, Sophos Plc, UK

Jakub Kaminski, Computer Associates, Australia
Eugene Kaspersky, Kaspersky Lab, Russia
Jimmy Kuo, Network Associates, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Sz6r, Symantec Corporation, USA

Roger Thompson, PestPatrol, USA

Joseph Wells, Fortinet, USA

SUBSCRIPTION RATES

Subscription price for 1 year (12 issues) including
first-class/airmail delivery: £195 (US$310)

Editorial enquiries, subscription enquiries,
orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park,
Abingdon, Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1235 531889
Email: editorial@virusbtn.com www.virusbtn.com

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material
herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specific clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2004 Virus Bulletin Ltd,The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.

Tel: +44 (0)1235 555139. /2004/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

V)

S1 NEWS & EVENTS

S2 FEATURE

Trust networks for email filtering

S4 SUMMARY
ASRG summary: September 2004

NEWS & EVENTS

SYMANTEC TO BLOCK PHISHING

Anti-virus and anti-spam vendor Symantec has announced
a new service to help identify and block phishing scams.

The Online Fraud Management Solution, which is aimed
primarily at financial services companies, will use probes
and decoy email accounts to collect, analyse and identify
new phishing scams. When new scams are identified,
Symantec will create filters to block the messages. The
filters will be deployed automatically to consumers who use
Norton AntiSpam and Norton Internet Security.

In addition, Symantec says that it will notify any Online
Fraud Management customer whose name has been used
fraudulently in the scam so that it can work together with
law enforcement agencies to track down the perpetrators
of the scam.

IETF REJECTS SENDER ID

The Internet Engineering Task Force (IETF) has rejected
Microsoft’s preferred anti-spam specification, Sender ID,
due to a possible intellectual property rights conflict.
Members of the IETF’s working group MARID (MTA
Authorization Records in DNS) reached a rough consensus
last month that Microsoft’s Sender ID specification should
not be made a mandatory part of the eventual standard.
The sticking point is that Microsoft’s has stated that it has
applied for patents which could affect Sender ID, but has

@Spam supplement

CONTENTS

failed to reveal any details. MARID co-chair Andrew
Newton posted to the group: “The working group has at
least rough consensus that the patent claims should not be
ignored,” saying that, since the patent applications were
unavailable and members of the group were unable to
determine exactly what the claims might be, MARID should
not undertake work in this area. However, Newton added
that the group would not rule out the possibility of work
with Sender ID, should the status of Microsoft’s patent claim
or its associated licence change in the future.

Both the Debian operating system project and the Apache
server project have also stated that they will not implement
Sender ID, reasoning that its current licensing terms are
incompatible with open-source licences.

THE BOUNTY HUNTERS ARE HERE

In a report to Congress, the US Federal Trade Commission
(FTC) has said that the US government must be prepared to
be generous with its rewards if it decides to encourage
‘bounty hunters’ to track down email spammers.

According to the FTC, rewards of up to $250,000 will be
required to encourage people to snitch on friends or
acquaintances who send out bulk unsolicited email. The FTC
also said that the cash will have to come from the federal
budget, rather than settlements collected from spammers.

But the FTC is not convinced of the effectiveness of such a
bounty scheme: “The commission does not believe that the
vast majority of consumers who are now forwarding
300,000 pieces of spam daily to the FTC spam database are
likely to be a good source for such information,” the FTC
said in a report to Congress.

EVENTS

INBOX East takes place 17-19 November 2004 in Atlanta,
GA, USA. The event will feature over 50 sessions across
five tracks: systems, solutions, security and privacy, marketing
and ‘The Big Picture’. See http://www.inboxevent.com/.

Following the success of the First Conference on Email and
Anti-Spam (CEAS 2004), the second conference will be
held in summer 2005 (date and venue yet to be announced).
A low-volume mailing list has been set up for CEAS
conference-related announcements — sign up by sending a
message with the body “subscribe ceas-announce” to
majordomo @lists.stanford.edu.

OCTOBER 2004 @

S1

SPAM BULLETIN www.virusbtn.com

FEATURE

TRUST NETWORKS FOR EMAIL
FILTERING

Jennifer Golbeck
University of Maryland, USA

The fact that spam has become a ubiquitous problem has led
to much research which concentrates on the development of
tools to identify spam and prevent it from reaching the
user’s mailbox. Less effort has been devoted to a question
that is related to spam, namely: how to distinguish
important messages from unimportant ones. The TrustMail
project uses reputation ratings in social networks to score
emails and allow users to sort messages based on this score.

BACKGROUND AND INTRODUCTION

Whitelist filters are one of the methods used for identifying
legitimate emails and filtering out spam. In these systems,
users create a list of approved addresses from which they
will accept messages. Messages received from whitelisted
sources are delivered to the user’s inbox, while others are
filtered into a low-priority folder. These systems do not
guarantee that all of the filtered messages will be spam, but
the whitelist makes the inbox more user-friendly by
showing only those messages that are definitely not spam.

However, there are two major problems associated with
whitelisting. Firstly, there is a burden placed on the user to
maintain a whitelist, and secondly, a number of valid emails
from non-whitelisted senders will almost certainly be
filtered into the low-priority mailbox. If that box contains a
lot of spam, the valid messages will be difficult to find.

Other approaches have used social networks for message
filtering. Researchers Boykin and Roychowdhury [1]
created a social network from the messages received by a
user and, using the structural properties of social networks,
identified the messages as ‘spam’, ‘valid’, or ‘unknown’.
Their method was able to classify about 50 per cent of a
user’s email into the spam or valid categories, leaving 50
per cent to be filtered by other techniques.

The TrustMail approach takes some of the basic premises of
whitelisting and social network-based filtering and extends
them. In this system, users assign a ‘reputation’ or ‘trust’
score to people they know. Email messages can then be
scored, based on the reputation rating of the sender. When
an email is received, an algorithm is applied to the social
network that makes a recommendation about the reputation
of the sender. The score appears next to the message.

This works like a whitelist, in that users can assign high
reputation ratings to the people who would normally appear

s2 @ OCTOBER 2004

on a whitelist. This preserves the benefit of making the
inbox more usable by making ‘good’ messages prominent.
The added benefit is that, by using the social network,
scores will appear next to messages from people with whom
the user has never had contact. Since scores are inferred
rather than taken directly from a list, fewer valid messages
will be filtered into a low-priority mail folder. Furthermore,
the initial set of ratings allocated by the user creates points
of connection into the network, increasing the number of
people for whom ratings can be calculated.

This mechanism is not intended to replace spam filters or
any other filtering system. We see our system of reputation
scores as being compatible with whitelists, spam detectors,
and other social network-based filters, and expect that a
combination of all of these strategies would provide the
maximum benefit to the user.

TRUSTMAIL: A PROTOTYPE

TrustMail is a prototype email client that adds reputation
ratings to messages. Essentially, it is a message scoring
system.

While TrustMail will give low scores to spam, it is unlike
spam filters that focus on identifying bad messages. Its
true benefit is that relevant and potentially important
messages can be highlighted, even if the user does not
know the sender.

Consider the case of two research groups working on a
project together. The professors that head each group know
one another, and each of the professors knows his own
students. However, neither is familiar with the students from
the other group. If, as part of the project, a student sends an
email to the other group’s professor, how will the professor
know that the message is from someone worth paying
attention to? Since the name is unfamiliar, the message
cannot be distinguished from other not-so-important mail in
the inbox. This is exactly the type of situation upon which
TrustMail improves.

The system searches along paths in a social network that is
augmented with reputation ratings. Using the values in the
network, we make a calculation to recommend how much
the recipient should trust the sender. Thus, in the above
scenario, the professors need only to rate their own students
and the other professor. Since the reputation algorithm
looks for paths in the network (not just direct connections),
there will be a path from the professor of one research
group to the students of the other group through the direct
professor-to-professor link. Thus, even though the student
and professor have never met or exchanged correspondence,
the student’s message achieves a high rating because of the
intermediate relationship.

SPAM BULLETIN www.virusbtn.com

8066 TrustMail - version: 1.0
Flo Edt Vew Foder Message Uilles Holp
|2 vewossane @ receneisens GDrony B ot @ @ @ & M=
(]
=18 Local Flders [©®|2 88 suectorsensercontains Rosst || goarn g
a4 (@108 st/ Jswea Jrrom oaie oz o]
& Tonont [} 10 Hey TRUSTYI Jennifer Golbeck Fi1738 ke
o 2 10 Re: Trust Network (fwd) Jennifer Golbeck Sat16:04 1KB
5 ouvox 5} Trust al Rocearc Notes Jim Hender Wan 0814 ke
D sen e 9 SPAM! Perry Lorier Mon 0312 KB
@ Trash @ i The Frogs are Escapingl crschimio@uiuc edu Mo 03.03 ke
- Search Results e 8 Ishould probably do some. . Leigh Dodds Mon 04:29 KB
=] 5 Trust the bus Steve Pomeroy. Mon 03:03 KB

[Bublect Hey, TRUSTYI
Dato . March 12, 2004 5:35:15 P
From - Jennifer Golbeck

| To: ust@aanandienora

Hey, Trusty One,

Check outthe new updiates I¥e made o the vebsits at
st mindswap org

-en

trust No new messages on server

Figure 1. The TrustMail Interface. More information and a download
are available at http://trust.mindswap.org.

CREATING AND MAKING CALCULATIONS

The only requirement for this system is that a network be
created where individuals assert their reputation ratings for
one another. Many of the large email providers will be able
to take advantage of their own population of users as a
starting place. Service providers like Microsoft, Yahoo! and
AOL have access to large numbers of users. Google would
have an even more explicit set of data available if it were to
integrate Gmail and the Orkut social networking website. To
make an Internet-wide reputation network that will allow
ratings to be made for any individual in any system is
slightly more complicated. Our prototypes use a semantic
web-based approach with publicly accessible social network
data that is distributed around the web.

The difference between our system and other social network
approaches to email filtering is that we rely on the entire
network. As such, we can provide information about people
with whom the user has never had any contact.

A relatively simple method is used to infer how much one
person should trust another person in the network. If Alice
receives a message from Bob, Alice will check to see if she
has rated Bob. If Alice does not have a rating for Bob, she
asks all of the people to whom she is connected to give her
their ratings of Bob. Alice then averages the values they
return, giving more weight to the ratings from highly trusted
neighbours than for lower trusted neighbours. Each of the
neighbours repeats this process to get the values that they
pass to Alice.

An interesting point to note here is that calculations are
made from the specific perspective of the recipient, not
universally. This means that Alice’s calculated rating of Bob
could be high, while someone else’s rating could be low,
depending on their ratings of people in the network. Our

Figure 2. The reputation network developed as part of the semantic web
trust project at http://trust. mindswap.org. This network was used in the
development of our prototypes.

experiments show that this personalization increases the
accuracy of the ratings by taking variations of opinion
into account.

CONCLUSIONS

The real benefit of this method is that, with a highly
accurate metric, valid emails from unknown senders can
receive accurate scores because of the connections within
the social network. Thus, the system complements spam
filters by helping to identify good messages that might
otherwise be indistinguishable from unwanted messages.

The ratings alongside messages replicate the way
reputations work in social settings, where strangers will
often introduce themselves with references to mutual
acquaintances. In the context of mail, TrustMail lowers the
cost of sharing trust and reputation judgments across widely
dispersed and rarely interacting groups of people. It does so
by gathering machine-readable encoded assertions about
people and their trustworthiness, reasoning about those
assertions, and then presenting those augmented assertions
in an end-user friendly way.

The author thanks James Hendler of the University of
Maryland, College Park, who serves as advisor on this work
and is a co-author of many related research papers.

REFERENCES

[1] Boykin and Roychowdhury, ‘Sorting e-mail friends
from foes: Identifying networks of mutual friends
helps filter out spam,” Nature Science Updates, 16
February 2004.

OCTOBER 2004 @ S3

SPAM BULLETIN www.virusbtn.com

SUMMARY

ASRG SUMMARY:
SEPTEMBER 2004

Helen Martin

Despite a smaller amount of traffic on the ASRG list this
month, there was plenty of debate. The main topics of
discussion were address verification and SPF.

Markus Stumpf kicked off a discussion on valid address
lists. Previously, the argument against address verifiers has
been that spammers would be able to use those services to
clean their lists or gather lists of valid recipients. However,
Markus queried, “Is ‘don’t tell the spammers whether an
address exists’ still true for today’s situation?”” He argued
that, “with all the spam networks of thousands of hosts,
spammers don’t seem to care about hammering dictionary
attacks against SMTP servers. Giving them a chance to find
out which addresses exist would not really change much for
the existing recipients or the targets of dictionary spams, but
it would save us all a big portion of mail to non-existent
users, a lot of bounces stuck in the queue and a lot of
bounces to faked sender addresses.”

Jeff Silverman felt that the address verifiers should be
transparent to the sender — the query should be made by the
recipient: “If I send you a mail, your mail client should
query the address verifier to see if [my address] is a valid
address. If so, [it should] deliver it to you, otherwise [it
should] drop it silently. The sender doesn’t know if the
message was delivered or not.” It would be possible, but
difficult for a spammer to fake a valid address, he said,
because they would not know what the valid addresses were.

Markus Stumpf posted a link to a BBC News story which
reported that CipherTrust had found that 34 per cent more
spam than legitimate email is passing through SPF checks
(http://news.bbc.co.uk/1/hi/technology/3631350.stm).
Richard Rognlie was the first of many to express his
disappointment that the journalist had failed to understand
that SPF is not, in itself, designed to stop spam, but to
prevent forgery. Peter Bowyer concurred saying,
“CipherTrust correctly reported that spammers are
publishing SPF records. What they didn’t emphasise enough
is that this means that SPF is working as intended. In order
to pass SPF checks, the spammer has to be using a
registered domain over which they have DNS control —
which is several steps towards accountability. The press
unfortunately picked up on the wrong part of the message,
and sensationalised it way out of context.”

There followed a discussion about whether it was the
journalists or the PR representatives of CipherTrust that
should be held responsible for the inappropriate emphasis
of the story — Anne P. Mitchell pointed out that, while the

@ OCTOBER 2004

company’s press release did contain all the facts, it was
worded in such a way that it could lead the relatively
ill-informed to conclude that SPF had ‘failed’ in ‘stopping
spam’. [Hmm, PR departments sensationalising stories for
publicity, where have we seen that before ...? Ed].

Eric S. Raymond said that if SPF deployment does nothing
other than stop the thousand bogus bounces he receives
each day as a result of spammers ‘joe-jobbing’ his domain,
it is a winner. Meanwhile, Fridrik Skulason said that, if
universally adopted, SPF will kill off the current generation
of computer worms. Furthermore, he said that if SPF were
combined with ISPs blocking port 25 by default, the
blacklisting of ISPs that allow spammers to set up one
throwaway domain after another, harsher legal actions
against those using compromised machines for spam and
Spamhaus-type blacklisting of spammers with their own
dedicated spam servers, “you would see a very significant
drop in spam.”

Daniel Feenberg asked, “What advantage does SPF have
over merely informing MAPS/Spamhaus, etc. of its dialup
ranges?” Damon Sauer responded, saying that the advantage
here is that the failure of SPF does not give you a 127.0.0.1
— you are in control of how to handle failures and successes.
“SPF does nothing to identify spam — only to validate the
sending domain to an IP address,” he said. “This is only one
piece of the puzzle, but a necessary one.”

Mark C. Langston described his own reputation-based
anti-spam solution, GOSSiP, which observes and rates
behaviour, shares ratings with others, obtains ratings from
others, and observes the behaviour of those sharing ratings.
“Unlike commercial solutions,” he said, “it’s free (as in
speech). It’s also free as in beer — no money changes hands,
so there’s no motivation to bias results. Even if results are
biased, the checks and balances built into the project allow
those trying to cheat to be detected quickly and
marginalized.”

The solution incorporates a working Postfix policy agent,
written in C, that communicates with a GOSSiP node via
SSL. Mark has yet to add a working GOSSiP node, without
the peer communication code. A working feedback agent
forwards the SpamAssassin spam rating automatically to a
GOSSIiP node, also via SSL.

Mark claims to have quickly built up a database of several
tens of thousands of unique identities, with a history of
spam/ham behaviour, and a reputation score based on a
sigmoidal function. His system also aggregates identities
when SPF is advertised for the domain part of the ID,
allowing for a single reputation across all senders associated
with the SPF record. With GOSSIP close to its first release,
Mark requested active programming contributions —more on
the project can be found at http://sufficiently-advanced.net/.

