
VIRUS BULLETIN SEPTEMBER 1999 • 13

VIRUS BULLETIN ©1999 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /99/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

FEATURE SERIES

Macro Viruses – Part 1
Dr Igor Muttik
AVERT Labs, UK

Macro viruses appeared about four years ago and are now
the most prevalent in the field. Their number is growing
very quickly (currently about 5,000). The macro virus
category is developing swiftly and many new terms and
notions are invented constantly, so it might be difficult to
keep up to date with them. It is easy to get lost in words
like ‘mating’, ‘remnants’, ‘downconversion’ until you
know what they actually mean.

This series gives an insight into the environment in which
macro viruses live (OLE2 files), summarizes the main
features of macro viruses and of their host applications,
explains currently used terminology and provides a basic
knowledge of how macro viruses operate.

What is a Macro?

Many applications provide the functionality to create
macros. A macro is a series of commands to perform some
application-specific task. Macros are designed to make life
easier, for example by performing everyday tasks like text
formatting or calculations in spreadsheets.

Macros can be saved as a series of keystrokes (the applica-
tion records which keys you press). They can also be
written in special macro languages (usually based on real
programming languages like C and BASIC). Modern
applications combine both approaches and their advanced
macro languages are as complex as general purpose
programming languages. When the language allows the
modification of files it becomes possible to create macros
that copy themselves from one file to another. Such self-
replicating macros are called macro viruses.

A Brief History

Many software packages have a macro language – perhaps
the very first well-known and widespread one was the
Lotus 123 spreadsheet. It was proved long ago that it is
possible for Lotus 123 to write a self-replicating macro (a
virus) which will be able to travel from one file to another.
However, viruses have never been a problem for Lotus 123
as its macro language is rather simple and access to files
can only be performed via menus. So, a virus for Lotus 123
would be extremely obvious – you would literally see the
infection process right on your screen.

In December 1994, the researcher Joel McNamara wrote
the first real macro virus for demonstration purposes. It was
called DMV (Document Macro Virus). In fact, there were
two viruses written – DMV for WinWord and DMV for

Excel. The samples were used to demonstrate the possibil-
ity of macro viruses on these platforms. The first field
macro virus – WM/Concept – appeared in the summer of
1995 and soon became the most widespread virus ever.

Platforms and Applications Supporting Macros

Most macro viruses are written for Microsoft WinWord and
Excel. Viruses for PowerPoint 97 also exist, even in the
wild (PP97M/Tristate). However, there are also experimen-
tal macro viruses for AmiPro (Green_Stripe), CorelDRAW
(CSC/CSV, etc.), Access 97 (AccessiV, etc.) and several
multi-partite viruses which infect executable files and
WinWord documents (Anarchy.6093, Heathen).

Macro viruses can work on any machine carrying, say,
WinWord – be it a PC, a Macintosh or a DEC Alpha
computer. Macro hosting applications are able to work
under many operating systems –Windows 3, Windows 95,
Windows NT, MacOS, SoftWindows, etc. There are certain
differences in implementations of the macro languages on
different machines (OS support is usually slightly different,
especially for the filesystem objects) but nevertheless,
many macro viruses can spread successfully on very
different types of computers and operating systems.

OLE2

Files produced by Microsoft applications (DOC documents,
XLS spreadsheets, PPT presentations created by all
versions of WinWord above 6.0, and all versions of Excel
and PowerPoint) are stored in so-called OLE2 files (note,
MS-Access files are not OLE2). OLE stands for Object
Linking and Embedding. It is just a standard describing a
file structure that is able to store many different streams
within one file. An OLE2 file is a file system within a file.

OLE2 files contain a special signature at the beginning (D0
CF 11 E0 – which stands for DOCFILE), the FAT (File
Allocation Table), and a directory just like a normal DOS
disk. Space inside an OLE2 file is allocated in blocks
referenced from the OLE2 FAT.

The access to OLE2 files is supposed to be gained through
APIs provided by OLE2.DLL and OLE32.DLL. These
DLL files support all necessary functionality to work with
OLE2 files (like add/delete/modify stream, open/update an
OLE2 file, etc.) The OLE2 technology is being licensed to
other software producers, so many vendors are now
supporting this format.

The flexibility of the OLE2 format allows the storage of
many not necessarily related items (they are called streams)
inside just one file. For example, the first stream of an
OLE2 file may hold the text, the second another OLE2 file,
the third an embedded picture, etc, see diagram.

14 • VIRUS BULLETIN SEPTEMBER 1999

VIRUS BULLETIN ©1999 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139./99/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

As you can see,
OLE2 files may
have unused
blocks. They
usually contain
information from
previous saves of
the file or just
some random data
from memory
(even the impor-
tant private data
you may not want
to be included in
any file!).

A very common
situation is when,
say, an XLS file

has a lot of strings reading ‘laroux’ inside but they are all in
the unused space. This situation frequently causes users to
panic while the file appears to be clean with no macros, let
alone infected by the Laroux virus. To avoid files having
unused clusters uncheck ‘Allow fast saves’ in Tools/
Options/Save.

In the following example the first OLE2 file has an embed-
ded OLE2 file as Stream 2 and a PCX file as Stream 3. The
embedded OLE2 storage contains a virus in Stream B and
another embedded OLE2 storage as Stream C. This third
OLE2 contains some macros in Stream a. This multi-level
structure is all held within one real file which is organized
as a file system on each level (because embedded objects
are also in OLE2 format).

In an OLE2 file it is possible to embed an XLS into a PPT
file (or an EXE into DOC, or a DOC into PPT). In this way,
tree-like structures within OLE2 may be created. If the
embedded object is being double-clicked on, its contents
are activated and macros (if any) may be executed.

A further complication is that to save space, PowerPoint
stores embedded OLE2 files in compressed form. So a PPT
file is an ordinary OLE2 file but it can have another
compressed OLE2 embedded. To be able to scan for macro
viruses inside the OLE2 files on all levels of embedding
scanners usually use their own OLE2 parsing and decom-
pressing engine. That allows the scanning of WinWord
documents directly, even without support of Windows’
OLE2.DLL and OLE32.DLL. Decent scanners are able to
scan OLE2 files even under DOS and NT on a Novell
server, a Unix machine, Macintosh, DEC Alpha, Sun, etc.

Template bit, DOC/DOT

WinWord 6/7 documents have a special bit inside which
says whether the current document contains anything but
text. WinWord 6/7 does not look for macros if the template
bit is zero. Normally, DOC files have this bit reset (zero)
and templates (DOT) set to 1. However, the bit itself is not
linked to the file extension (and on Macintosh there are no
fixed extensions for files).

So, it is possible to have: 1 – a file with no macros and the
template bit set (this normally does not happen but can
happen when all macros are removed from the DOC file),
2 – a file with macros (e.g. virus) and the template bit set
(this is a normally infected file), or 3 – a file with macros
(e.g. virus) and the template bit reset (this means the virus
is inactive, or ‘dormant’ – it will not infect until somebody
flips the template bit).

Scenario 1 often causes the user confusion. Even when a
file is clean, WinWord insists on saving it as a template
(FileSaveAs offers only ‘Document Template’ type). There
is no functionality built into WinWord to clear the template
bit. The easiest way to get rid of it is to select whole text
(Ctrl+5), paste it to clipboard (Ctrl+C), close the file

(Ctrl+W), start new file (File/New)
and paste the text back (Ctrl+V).
Now FileSaveAs will work fine.

Office 97 and Office 2000 ignore
the template bit and check for the
presence of macro storage. How-
ever, it is possible to have an
Office 97 file with empty storage
(i.e. no macros). Then an Office
application would display the
macro warning box even for a file
with no macros whatsoever.

[Next month, the second instalment
covers WordBasic,VBA, up/down
conversion and polymorphism. Ed.]

