
HAVE YOU SCANNED
YOUR
BIOS RECENTLY?

Aditya Kapoor, Cylance
akapoor@Cylance.com

Virus Bulletin Conference, 2017, Madrid.

mailto:akapoor@Cylance.com

Who Am I

▪ 15 years in security Industry (ULL, McAfee, Intel ?, Cylance)

▪ Wrote malware signatures and cleaning back in the day.

▪ Primary contributor to rootkit scanner at MFE. POC Deepdefender,
Intel Tech and Backend Infrastructre.

▪ Current interests Firmware Security, Static program anlysis and
building product features.

▪ Loves playing Cricket and Tennis.

▪ Last VB talk in 2011 on rootkits.

2

What this talk is about

3

Coerce the AV industry to spend more
money on firmware defense

What this talk is (really) about

▪ UEFI (Unified Extensible Firmware Interface) Overview

▪ UEFI-attacks > UEFI-Defense

– State of affairs of UEFI attack and Defense

– Are UEFI attacks real/costly to build?

– Time to turn the tables?

▪ UEFI Scanner – What/Why/Who?
– AV Problem or Firmware/hardware vendors problem?

▪ And coercing … ☺

4

What this talk is NOT about

▪ New L33t UEFI vulnerabilities (I leave that to experts)

▪ How to brick (er.. Debug) your hardware

5

=

Legacy Bios

6

Legacy Bios

▪ Created in 1975 by IBM
– Hmm….. This should last us 2 years

▪ years later we are still discussing it.

▪ BIOS initializes CPU, RAM, does POST (Power on self test) and then it
checks for any option ROMs (LAN, PCI), then passes the control to
boot loader.

7

Legacy Bios Challenges

– Hardware dependent and inflexible updates.

▪ Everytime a new hardware is introduced, new updates and
workarounds needed to be added.

– Limited execution space in 16bit real mode

▪ Small option ROMs

▪ Assembly code for BIOS , complex updates.

▪ Size of bootable devices is 2.2 TB max.

– Security challenges.

▪ Minimal signed bios

▪ No verification at the boot load time.

8

UEFI Bios

9

UEFI Bios

▪ EFI-Extensible Firmware Interface

▪ Intel created it in early 2000’s , since processors were 64 bit but bios
were still 16 bit.

▪ 2005 -> Unified EFI was born.

▪ UEFI -> is actually just a specification, vendors can use the spec to
create their own bios.

▪ Why EFI? Why not Legacy Bios?

10

UEFI Bios

▪ Benefits
– Has programing language (C)
– No Limits on option ROMs. (64kb, hardware dependent)

▪ Replaced by drivers.

– Supports HDD > 2.2TB
– Supports modern hardware needs.

▪ System management
▪ Power management
▪ Remote services
▪ Enhanced security
▪ Supports Secure boot, larger HD
▪ Faster boot times.

▪ Post UEFI - Standardization
– 330+ members of UEFI
– Supports Intel/ARM and Windows, Ubuntu, RedHat etc.
– Routers, Scada, Automotive and IOT devices.

11

Bios attacks in the news

12

Current state of UEFI attacks

13

Intel provided
Data at BH2017

Why target UEFI?

*Image Credits - https://github.com/REhints/BlackHat_2017/blob/master/Betraying the BIOS.pdf
14

System overview

15

https://www.slideshare.net/DefconRussia/dcg29-
safeguarding-rootkits-intel-boot-guard-part-ii

Uefi firmware storage layout

▪ Flash Storage is typically divided into five
sections, the first of which describes the
flash layout.

▪ The flash descriptor starts with the
signature 0x0FF0A55A at offset 0x10 and
contains various components like a
descriptor map and region. The region
contains offsets and the size of the BIOS
region.

▪ The flash descriptor is always the first
region and the BIOS is always the last
one on the chip.

16

Uefi boot process

17

Intel boot guard , supplying root of trust.

18

Arbitrary writes to SPI flash – Worst case scenario

19

OS

Update APP

Update Driver

Ring 3 1

Ring 0

2

Memory(DRAM)

Update

Image

SPI Flash

Arbitrary

Write

3

Typical Bios update path with security enabled.

20

OS

Update APP

Update Driver

Ring 3 1

Ring 0

2

Memory(DRAM)

Update

Image

SMM

SMI Flash

Ring -2

3

SPI Flash5

4

• Verified Capsule update

• Measured/Verified boot

• Plarform key check
• BIOS_CNTL

• FLOCKDN

• Hardware trust / FPF stores the

platform key, which initiates root

of trust, during capsule update.

• Root of trust is firmware , code

running here is as trusted as

SMM.

S3 Resume

CVE-2017-11316 , CVE-2017-11315

PRx t0 the Rescue

Current state of UEFI security

21
*Image Credits - https://github.com/REhints/BlackHat_2017/blob/master/Betraying the BIOS.pdf

UEFI

Firmware

Image

ACM/Microcode

Bios Guard

Boot Guard

FLOCKDN

SPI Write

Protection (PRx)

BIOS_CNTL

BIOS Lock Bit

(BLE)

BIOS_WE

SMM_BWP

Signed Image Secure Boot

Dell Bios

Verification

HP Surestart

Protects the

Flash

Protects various

boot blocks

Additional

verification layer

IDS system for

firmware

Protects the bios

from arbitrary

writes

Protects specific

ranges

Recommended flash update method

22

Who’s with me?

23

State of Security in various tested
platforms.

24

A crafted attack in our labs

25

Demo

26

UEFI Scanner Components

▪ Pre-Infection checks
– How many bug classes can it address?

– Checks for incorrect configuration, variables?

– Any dynamic runtime checks?

▪ MMIOBAR

▪ SMM protections and vulnerabilities etc.

▪ Post infection checks (UEFI static scanner)
– Scan enterprise networks for known malicious or anomalous EFI binaries.

– This is in the realm of traditional AV.

27

Uefi static scanner overview

1. Extract UEFI BIOS from SPI flash storage.

2. Parse UEFI firmware file system.

3. Extract firmware volumes.

4. Extract file sections and categorize them.

5. Recursively extract UEFI drivers and applications from sections.

28

SPI flash extraction

1. Determine the platform DeviceID and VendorID the application is running on by
reading PCI Configuration via CONFIG_ADDRESS 0x0CF8 followed by STI
instruction.

2. To get the VendorID/DeviceID, we need to pass the bus ,device, function and offset
parameter values as 0. (The read_pci_reg function can be used as shown in Chipsec
code)

3. Find the base address register of SPI using the same function but passing the
correct (depends on the platform) bus, device, function and register parameters.

4. Set up hardware sequencing flash control registers(HSFC) with ‘Flash Cycle’ as
Read for the CPU to read the SPI flash and copy it via the SPI memory mapped
configuration register FDATA0.

5. The maximum size of data returned in the memory location pointed to by the
FDATA0 register is 64 bytes, so the SPI flash dump would get saved in chunks of
64 bytes.

29

FFS (Firmware file system)

30

Firmware volume layout

31

Typical Firmware volume start

32

Firmware file and sections.

33

UEFI tool and hacking team bios implant

34

Cost of building a working UEFI bypass.

▪ Depends how secure the UEFI implementation is, how many check
boxes are checked.

▪ In a poorly safeguarded system approx. cost could run in thousands
to tens of thousands of USD to build a full stack attack with SPI flash
persistence.

▪ In a system where we need to find zero days in each layer of attack it
might run in millions.

▪ Unfortunately too many systems are unguarded.

35

Analysis done by Firmware experts –
44Con

36

https://github.com/abazhaniuk/Publications/blob/master/2017/
44CON_2017/Bulygin_Bazhaniuk_44con.pdf

Conclusion

▪ Understanding UEFI threat landscape and current security solutions
is a bit of a learning curve.

▪ Cooking up an attack on one of the current consumer devices is
within reach of many established malware groups.

▪ UEFI scanning is probably the quickest thing that AV-industry can
contribute their expertise in.

▪ Firmware attack surface scanning.
– Any dynamic checks and misconfiguration checks are very useful to know , but

how will we act on them?

37

Thanks for listening

▪ Email : akapoor@Cylance.com

▪ References for this presentation

can be found in the VB paper.

38

mailto:akapoor@Cylance.com

