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What is the objective? 

• Automate the process of finding samples that 

exhibit kernelmode behaviour 

 

• List the modifications made to the kernel 

 

• Identify the maliciousness of specific 

modifications 

 

• Import that data into other systems 
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How do we automate the process? 

•Use existing tools 

 

•Build our own 
• Using anti-rootkit tools 

• Using a custom diff based solution 
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Bird’s eye view 
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Running Driver files 

6 

Guest VM 

Is Driver 

file ? 

Driver Analysis 

Package 

Other Analysis 

package 

(Servicename | StartType | ServiceType | LoadMode) 

 

“Register service using scm 

If not loadmode then: 

  start service using NTLoadDriver 

Else: 

  start service using loadmode option 

If not service is running: 

   report FAIL ! “ 
 



Usage of the Sophos AV Engine 
 

With the SAV engine we get: 

• Existing software that has a presence in the kernel 

• The ability to examine/dump areas of kernel memory 

• The ability to write to a log file 

 

 

NOTE: Due to modular design we don’t need to use the 

Sophos AV engine. 
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Examining the kernel 

Drivers Modules SSDT 

IDT Callbacks 
Disk 

Information 

What areas are we looking at? 
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Processing the data 
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{  "mbr" : {  },  "drivers" : {    

"\\FileSystem\\luafv" : {      

"driverstart" : -1869398016,      

"driversize" : 110592,      

"driverinit" : -1869319406,      

"driverstartio" : 0,      

"driverunload" : 0,      "filepath" 

: 

"C:\\Windows\\System32\\driver

s\\luafv.sys",      "sha" : 

"befb20d2e32a0107602707d3f

6de84aa483a5b5e",       

{  "mbr" : {  },  "drivers" : {    

"\\FileSystem\\MRxDAV" : {      

"driverstart" : -161308672,      

"driversize" : 180608,      

"driverinit" : -161144443,      

"driverstartio" : 0,      

"driverunload" : -161263572,      

"filepath" : 

"C:\\WINDOWS\\system32\\driv

ers\\mrxdav.sys",      "sha" : 

"68dc26e6576ef52bedc7d97ba

44679a0e1cc3d74",      "irp" : {  

Processing module 

Capture Added – Changed – 

Deleted data 

Eliminate noise 

Tag and organise data 

Baseline data Job analysis data 

Diff data 



Analysis log 

Baseline log 

Processing the data 
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Data flow 

11 

Data  Signatures Reporting 

{"drivers": {"\\Driver\\4C3553F1": 

{"Added": {"driverinit": 

"0xf7b97983", "driverunload": 

"0xf7b9794a", "irp": 

{"IRP_MJ_CREATE_MAILSLOT

": "0xf7b97965", 

"IRP_MJ_SET_QUOTA": 

"0xf7b97965", 

"IRP_MJ_SET_SECURITY": 

"0xf7b97965", 

"IRP_MJ_SET_VOLUME_INFO

RMATION": "0xf7b97965", 

"IRP_MJ_WRITE": 

"0xf7b97965",  …" 

generic_new_driver 

generic_modified_driver 

generic_deleted_driver 

generic_new_module 

generic_deleted_module 

generic_ssdt_hook 

generic_idt_hook 

generic_new_callback 

generic_modifed_callback 

generic_attached_device 

… 



Drivers 

New driver objects 

Modified driver objects 

Deleted driver objects 

Signatures 
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Modules 

New Modules 

Modified Modules 

Deleted Modules 

Signatures 
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Devices 

New device objects 

New device objects by 

newservice 

Signatures 
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Callbacks 

New Callbacks  

Modified Callbacks 

Signatures 
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Hooks 

SSDT Hooks 

IDT Hooks 

Signatures 
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Disk 

Modified MBR 

Modified VBR 

Modified EOD size 

Signatures 
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Reports 
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Tests 

• High profile rootkits 

• TDL Derivatives 

• GAPZ 

• Turla 

• Necurs 

• Experiment B: Malicious and clean driver set 

• Experiment C: Random set of known malicious PE files 
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TDL Derivatives 
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TDL Derivatives 



GAPZ 
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6A08              push byte +0x8 

CDC3              int 0xc3 

90                nop 

Turla a.k.a Snake, Uroborus 
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Necurs 
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High profile rootkits 

 

• We do not always get enough information to 

classify specific families 

 

• We are getting enough information to warrant 

further investigation by an researcher 
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Experiment B 
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82% 

18% 

Malicious Drivers 

With Kernel
Data

Without
Kernel
Data

51% 
49% 

Clean Drivers 

With Kernel
Data

Without
Kernel
Data

• Total number of malicious drivers 1854. 
• Total number of clean drivers 1053. 
• Insufficient time for the log to be generated was a common 

reason for failure to get back kernel data. Miss the log by a 
second or two. It’s a trade off.  
 



And the results is 
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Experiment A 
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Experiment C 
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96% 

4% 

Set of PE files 

With Kernel
memory

Without Kernel
Data

• 319 of known malicious PE files. 
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Weighting the signatures 
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Suspicious 

Modified driver 

Modified module 
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New driver objects 

New module 
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SSDT Hook 
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New Callback  
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Conclusion 

• Malicious activity can be identified via modifications 

rather than creation 

 

• Malicious drivers are unlikely to employ anti-sandboxing 

techniques 

 

• Good enough to identify kernel activity 

• Not exhaustive analysis 
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Future work 
• Exploring other areas of the kernel 

• Object table 

• DKOM 

• 64bit drivers 

• Sample clustering 

• Usermode rootkits 
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Questions? 
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