
VIRUS BULLETIN www.virusbtn.com

1JULY 2014

Covering the
global threat landscape

VBA IS NOT DEAD!
Gabor Szappanos
Sophos, Hungary

VBA macro malware was the dominant beast of the second
half of the 1990s. This was the era of the simple WordBasic
and later VBA macro viruses, the latter starting their sharp
rise on the prevalence lists with the appearance of Concept,
and then slowly declining after 2001, with occasional
appearances lower down the prevalence charts in the years
that followed. Figure 1 shows virus prevalence by type using
data aggregated from Virus Bulletin’s monthly malware
prevalence stats.

In the past fi ve years, macro viruses (and more generally,
macro malware) could be considered practically extinct
– thanks mostly to the security improvements that were
introduced over that period of time to their main target, the
Microsoft Offi ce products.

However, this does not mean that our virus lab no longer
encounters malicious Word documents and Excel workbooks
– on the contrary, they have appeared on our virus radar
quite frequently recently, but for a different reason. The new
sightings are exploited documents using one of the Offi ce
vulnerabilities to drop or download some trojans or backdoors.

In the past couple of months, we have observed the
resurgence of malicious VBA macros – this time, not self-
replicating viruses, but simple downloader trojan codes.

Figure 2 shows the prevalence of the document-based
infection reports received by our virus lab in a three-month
period, covering March, April and May. We can see that,
following the usual suspects (the CVE-2012-0158 and
CVE-2010-3333 vulnerabilities), the VBA downloaders are
the next most prevalent.

SOCIAL ENGINEERING TO THE RESCUE
Visual Basic for Applications (VBA) is the macro
programming environment of the Microsoft Offi ce suite.
Unlike the BASIC language, which is commonly perceived
as a tool for beginners, VBA is quite a capable programming
environment, as has been well demonstrated by macro viruses
in their prime. However, the new wave of trojans described in
this analysis doesn’t stretch the limits of the language, and in
fact are very simplistic.

There is a complication that arises from using a VBA macro
instead of an exploit to activate the infection process. In all
Offi ce suites starting from Offi ce 2007, the execution of VBA
macros is disabled by default. Consequently, the VBA code
will not execute in newer versions of Offi ce. Furthermore,
the user is warned on the Word menu bar about the fact that
macros have been disabled, as shown in Figure 3.

Figure 3: Word security warning.

But the malware authors were prepared for this obstacle, and
overcame it by deploying simple social engineering tricks. Figure 1: Virus prevalence by type.

Figure 2: Distribution of malicious document infection
vectors.

(The ‘Word exploit’ category is a medley of exploited documents where
we do not identify the exact exploits – however, in the majority of cases
the exploit in use is CVE-2012-0158. The ‘no exploit’ category represents
the same Zeus dropper RTF embedded executables, which require the
user to double-click on the embedded object, as were mentioned in our
2014 Q1 trends report [1].)

VIRUS BULLETIN www.virusbtn.com

JULY 20142

They prepared the content of the documents in such a way
that it would lure the recipient into enabling the execution of
macros, and thus open the door for infection.

The malware authors have been busy – since the fi rst
appearance of this group of malware at the end of January
2014, at least 75 different variants have appeared. A wide
variety of document content has been used – a few examples
of which are described in the following paragraphs.

The most peculiar (and one that resembles the social
engineering technique used in a Napolar distribution

campaign at the end of 2013 [2]) is one in which a blurred
transaction report is placed in the document content,
encouraging the user to enable macros in order to access
the full content. Conveniently, instructions are provided as
to how to enable the macros, including an arrow pointing to
the exact location where the user is supposed to click (see
Figure 4).

A different variation of the same approach with less fancy
graphical content is shown in Figure 5.

In other cases, content is marked as confi dential and the user
is encouraged to enable macros in order to view it, as shown
in Figure 6.

Figure 6: Again, the user is instructed to enable macros.

Some examples are more minimalist in design, just giving out
basic information, as shown in Figure 7.

A few of the samples we encountered were rather esoteric
and vague, building upon the possibility that the receiver
of the document will be as clueless about the point of the
message as I was while reading it, and enable the macros
purely through curiosity (see Figure 8).

Finally, there were cases where the malware authors
left everything to the user’s imagination, giving no hints
whatsoever (see Figure 9).

Regardless of the document content, the result is always
the same: when the user is convinced to enable macros, the
malware is ready to run, and on reopening the document, the
VBA code will execute.

Figure 4: An arrow indicates where to click.

Figure 5: Less fancy graphical content.

 VIRUS BULLETIN www.virusbtn.com

JULY 2014 3

MULTI-PLATFORM DOWNLOADER CODE
The macro code, designed for automatic execution on
opening, has the following structure (the order in which
the individual functions appear and the name of the main
function varies in the different variants):

Sub Auto_Open()
 main_code()
End Sub
Sub main_code()
...
End Sub
Sub AutoOpen()
 Auto_Open
End Sub
Sub Workbook_Open()
 Auto_Open
End Sub

The main code is either in or called from the Auto_Open()
function (which is executed when Excel is started). It is also
invoked by the two other event handler functions, AutoOpen
(which is invoked when a Word document is opened or Word
is started) and Workbook_Open (which is invoked when an
Excel workbook is opened).

Automacros

Microsoft Offi ce programs provided a couple of ways a
programmer could automatically execute macros when a
specifi c event occurred. Some of them were tied to menu
commands, while the automacros were connected to global
application events. If the document contained macro
procedures that were using one of the predefi ned, special
names, these procedures were called by the Offi ce application
when the specifi c event occurred.

In Microsoft Word, these events were tied to starting the
Word application (the event could be captured with a macro
procedure named AutoExec), exiting Word (AutoExit),
opening a document (AutoOpen), closing a document
(AutoClose), or creating a new document (AutoNew).

Microsoft Excel had a wider selection of automatic macros, but
included similar functions, such as starting Excel (Auto_Open),
exiting Excel (Auto_Close), opening a workbook (Workbook_
Open) and closing a workbook (Workbook_Close).

The structure of the trojan’s macro code ensures that the code
is executed whenever the document is opened. Even though
the code itself is cross-application, and Workbook_Open
and Auto_Open could make it work in Excel, we have not
observed any Excel workbooks in the distribution campaigns,
only Word documents. Still, the dual structure covering both
Word and Excel remains in the code – probably because
the malware authors were too lazy to clean up the proof-
of-concept code they used as ‘inspiration’ – exactly as we
observed in last year’s Napolar campaign [2].

Figure 7: More of a minimalist design.

Figure 8: Hoping the receiver will enable macros through
curiosity.

Figure 9: No clue is given at all.

VIRUS BULLETIN www.virusbtn.com

JULY 20144

Although all of the samples we encountered followed the
simple code template described above, we could distinguish
two different strains among them.

The most common strain fi rst called the
UrlDownloadToFileA Windows function to download the
fi nal payload from a hard-coded URL, then saved it either to
the %TEMP% folder or the %APPDATA% folder, and fi nally
ran it using the Shell function. The dropped executable was
usually registered for automatic execution during system
start-up in one of the registry autorun locations, such as
HKCU\Software\Microsoft\Windows\CurrentVersion\Run.

Of the 74 documents we identifi ed as belonging to the VBA
downloader campaigns (at the time of writing this paper), the
vast majority (60) belonged to this group.

On looking more deeply into the Word documents, some
interesting characteristics could be observed. The metadata
for each document includes document creation/modifi cation
times, revision number, and the author of the document.
Looking into these properties revealed that the different
documents were all attributed to the same author name,
‘tps’. It is reasonable to assume that the largest number of
malicious documents come from the same source.

Figure 10: Looking at the fi le properties reveals the same
author name.

Another useful piece of information is the name of the
last user to have saved the document. This revealed some
interesting names. Some just indicated the malware author’s
favourite gadgets (‘DELL XPS’, ‘Xpera Z’), while others
gave a hint as to the author’s name or nickname (‘Sammy
Sam’, ‘Sammy2014’, ‘samy14’ and ‘samy2014’).

Even more interesting is the fact that the creation date
(highlighted in Figures 11 and 12) was the same for most of
these documents, as shown in Figure 13.

This suggests that the development of this VBA trojan family
started on 3 January, and the author didn’t bother to create
a new document each time a new variant was created, but
simply kept modifying the previous version by adding new
social engineering content and occasionally changing the
macro code – the increasing revision number also supports
this assumption. Despite the fact that the last-saved-by name
differs within the group, the creator is always ‘tps’ – this
is another indication that this group of malware is derived
from the same root document. The development of this
strain appears to be an ongoing project, with the most recent
version at revision number 91.

The rest of the 74 documents are likely to have been
developed independently from the previous group. They use
a different method, reminiscent of the VBScript downloaders

Figure 11: File last saved by ‘Sammy2014’.

Figure 12: File last saved by ‘Sammy Sam’.

 VIRUS BULLETIN www.virusbtn.com

JULY 2014

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Perl Developer: Tom Gracey

Consultant Technical Editors: Dr Morton Swimmer, Ian Whalley

© 2014 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

5

from a decade ago. The remote fi le from the hard-coded URL
is downloaded using the MSXML2.XMLHTTP object, and
then the downloaded content is saved to the %APPDATA%
folder or %USERPROFILE% folder, and fi nally executed
using the Shell function.

In this strain of VBA downloaders, in each case, the author
and the last-saved-by name are the same, and the creation
and last-saved dates are roughly the same. This suggests a
different mode of operation: rather than the same template
document being modifi ed over and over again, new ones were
created most of the time.

FINAL PAYLOAD

The downloaded payloads demonstrated a wide range of
ordinary crimeware. We observed:

• Zeus-related AutoIt executables:

https://www.virustotal.com/en/fi le/ace7db9b08d65b2c4
f0c011a54571039e45ca4010aaf482c73ee7ef860019d8c/
analysis/

https://www.virustotal.com/en/fi le/8b6757271611fe6ff0f
758bffee20e488d19b583be0352584f191d21d241bcfd/
analysis/

https://www.virustotal.com/en/fi le/c85fe4874ddfa96845
69819db42fb321641088cbe15e6e54d28de49de26f155c/
analysis/

• A DotNET injector:

https://www.virustotal.com/en/fi le/f1b0432594bf9651ad
50d755fe1967fd2a16f112e5c0df6ebc5311166857d30c/
analysis/

• Old-fashioned RATs like Simda:

https://www.virustotal.com/en/fi le/f456df5aa1af278ccd9
958bf7f0b18ab36ed05ccb73aed8d7faec8a5898d8bcb/
analysis/.

CONCLUSION

Our earlier report pointed out [1] that ordinary cybercriminals
turned to Offi ce exploits as an alternative delivery method for
their creations. Current trends show that they have moved one
step further into the Offi ce realm: they have discovered the
long-forgotten VBA macros and added them to their repertoire.
This emphasizes the fact (I can’t even count how many times
it has been proven in the past) that there is no need for fancy
exploitation. When the aim is to infect a large number of users,
good old social engineering never fails to deliver the results.

Finally, a piece of advice: there is no justifi cation as to why
the content of a document can only be displayed properly if
the execution of macros is enabled. If you receive a document
with this advice, be aware: you are probably being attacked.

REFERENCES
[1] http://nakedsecurity.sophos.com/advanced-persistent-

threats-the-new-normal.

[2] http://www.virusbtn.com/virusbulletin/
archive/2014/04/vb201404-VBA.

Figure 13: The creation date is the same for most of the documents.

