
VIRUS BULLETIN www.virusbtn.com

1JANUARY 2015

Covering the
global threat landscape

NESTING DOLL: UNWRAPPING
VAWTRAK
Raul Alvarez
Fortinet, Canada

A lot of malware families perform their malicious activities
within a single executable. Complete with body armour
and shields, they load themselves into memory, decrypt
just enough binaries, and then carry out their malicious
actions under the protection of encryption and other stealth
techniques. Thus it is hard to get a complete binary dump for
simple analysis.

It is less common for a piece of malware to wrap itself
in layers and at the heart of those layers, expose a simple
complete binary executable – but that is exactly what a piece
of malware known as Vawtrak does. In this article we will
unravel Vawtrak’s layers, each of which gives rise to the next,
just like a nesting doll.

Vawtrak, which is also known as Neverquest or Snifula, is a
banking trojan that recently made the headlines because of its
high level of sophistication. Initially it targeted only Japanese
systems, but it has recently broadened its geographic scope
[1]. Vawtrak spreads through drive-by downloads, attached to
spam emails, and is also downloaded by other malware.

Other articles, such as [2], have looked at how the malware
communicates with its C&C server and how it targets various
banks. This paper looks specifi cally at how the malware
installs itself persistently on a machine, frustrating both
researchers and anti-virus products along the way.

LAYER 1 (THE OUTER DOLL)
In this section, we will look into the different algorithms
performed by the outer layer (i.e. the malware itself) and at
how it generates the executable binary that forms the next
layer. The outer layer also contains the image fi le that is
displayed once the malware is executed, to trick the victim
into believing that is all the fi le does.

Simple anti-debugging trick

Anti-debugging tricks are common in modern malware. The
variant of Vawtrak we looked at uses what appears to be a
simple anti-debugging trick. There is nothing signifi cant in
its execution, and it doesn’t have a sneaky trick up its sleeve.
However, when we look at how it is delivered, we see that it
can easily stop heuristic scanning of the executable.

In its initial execution, Vawtrak calls the following
APIs: GetModuleHandleA, InitCommonControlsEx and

GetCommandLineA. None of these suggest that anything
malicious is going to take place.

These instructions are followed by 1,600 (0x640) zeros (‘0’),
where each pair of zeros is interpreted as ‘ADD BYTE PTR
DS:[EAX],AL’, an irrelevant instruction that is repeated
800 times. This is a simple trick that could stop a simple
anti-virus engine from emulating the malware.

Next, Vawtrak gets the address of the PEB (Process
Environment Block). The third byte of the PEB is the
‘BeingDebugged’ fl ag, which has a value of TRUE if the
process is run within the context of a debugger.

The malware doesn’t check specifi cally for the
‘BeingDebugged’ fl ag byte. Instead, it checks for the
DWORD value from the third byte of the PEB, which
contains the ‘BeingDebugged’ fl ag, the ‘SpareBool’ fl ag
(reserved), and ‘Mutant’ DWORD value (reserved). Since the
‘Mutant’ value is a DWORD, only half of it is checked.

If the malware is being debugged, the DWORD value from
the location PEB+2 will contain 0xFFFF0001. If this is not
the case, the malware will continue execution.

After performing its anti-debugging check, the malware
parses the stack memory to locate a return address that is
located within kernel32.dll. Another check is then performed
against the ‘BeingDebugged’ fl ag – in case the fi rst
anti-debug trick was unsuccessful. After performing a series
of simple computations, the ImageBase of kernel32.dll is
found.

String generator and API resolution

After fi nding kernel32’s ImageBase, the malware resolves the
APIs it requires by performing the following routine:

1. A simple string generator is used to produce the names
of the APIs and libraries that it needs.

 The string generator starts by pushing DWORD values
into the stack memory and adds each DWORD to
another group of DWORD values. These DWORDs are
constant in nature, pre-computed for specifi c strings such
as ‘GetModuleFileNameA’.

2. The malware parses the export table of the kernel32.dll
library to look for an API name that matches the
aforementioned string. When a match is found, the index
of the API name is used to locate the address of the
corresponding API.

Using the above routine, Vawtrak also resolves the following
APIs: GetModuleFileNameA, CreateFileA, SetFilePointer,
CloseHandle, ReadFile, WriteFile, GetTempPathA,
LoadLibraryA and lstrcat.

VIRUS BULLETIN www.virusbtn.com

JANUARY 20152

Using the newly resolved LoadLibraryA API, Vawtrak loads
the shell32.dll library into memory. This library name is also
generated using the string generator. Using the technique
described above, the ShellExecuteA API is also resolved
from the shell32.dll library.

Simple API calling

When a regular application performs an API call, it does so
by pushing all required parameters to the stack memory and
then calling the API.

When, throughout its three layers, Vawtrak performs an API
call, it fi rst pushes all the required parameters to the stack,
then it pushes the address of the API. Finally, it executes
a RETN instruction, effectively jumping to the last value
pushed, which is the address of the API.

At random locations between these instructions, NOP, DEC
EDX and INC EDX instructions can be seen, which is
another trick to make detection of the malware more diffi cult.

Main module

After a series of calls to the CreateFileA, SetFilePointer and
ReadFile APIs that yield no meaningful results (which could
either be a bug, or these calls could be intended as garbage
code), Vawtrak gets the pathname of the current module using
a call to the GetModuleFileNameA API and opens this path
for reading using a call to the CreateFileA API.

This is followed by reading 260 (0x104) bytes from the
physical fi le using a combination of the SetFilePointer and
ReadFile APIs. These bytes hold the encrypted fi lename
‘mainOUT-crypted-5.exe’1, which will be used later for the
dropped fi le. The fi lename is obfuscated using the single-byte
XOR key 0xAA.

Using a combination of the GetTempPathA, lstrcat and
CreateFileA APIs, Vawtrak creates the fi le ‘%temp%\
mainOUT-crypted-5.exe’ with GENERIC_WRITE access.

To fi ll this newly created fi le, the malware needs to decrypt
a large block of data from the ‘overlay’ area of the original
malware fi le. (The ‘overlay’ area of an executable fi le is not
loaded into memory when the operating system executes the
fi le.)

Vawtrak’s overlay area holds an encrypted copy of the
executable binary that is used in the next layer. It is to be
transferred and decrypted into the malware’s virtual memory
space.

Decryption and the dropped executable fi le

Initially, the malware reads 1,024 (0x400) bytes of data from
the overlay area into memory. Then it decrypts the bytes

1 The same fi lename has been observed among various samples, but it is
possible that other variants use different fi lenames.

using a simple decryption algorithm with four byte-wise
instructions: ‘SUB AH, 0x63’, ‘XOR AH, 0x42’, ‘XOR AH,
0x63’ and ‘NOT AH’. A variable number of NOP instructions
are embedded in-between these instructions.

Upon decryption, the newly decrypted bytes are written to the
previously created fi le, using the WriteFile API.

This routine is repeated until the full overlay area has been
read and the decrypted fi le has been stored. It is then closed
using the CloseHandle API.

Finally, Vawtrak executes ‘%temp%\ mainOUT-crypted-
5.exe’ by calling the ShellExecuteA API.

Dropped image fi le

While ‘%temp%\ mainOUT-crypted-5.exe’ runs in the
background, Vawtrak reads another 260 (0x104) bytes from
the original malware into memory. Using the same simple
XOR key, 0xAA, it generates the string ‘Diana-23.jpg’. The
previously discussed set of instructions is then used to create
an image fi le with this name in the temporary folder.

Finally, Vawtrak displays the image by calling the
ShellExecuteA API; the operating system will automatically
associate the fi le with the default image viewer. Figure 1
shows part of the image which is displayed once the main
malware is executed. It also resembles the icon used by the
original malware.

After displaying the image, the malware tries to generate
another fi le but there seems to be a bug in generating the third
fi lename, causing this part to fail.

Figure 1: Pixellated and cropped version of the image
displayed.

LAYER 2 (THE SECOND DOLL)
In this section, we will discuss the algorithms performed during
the execution of the ‘%temp%\ mainOUT-crypted-5.exe’ fi le

 VIRUS BULLETIN www.virusbtn.com

JANUARY 2015 3

(the second ‘doll’ in our nesting doll analogy), which has been
dropped by the outer layer.

Executing ‘mainOUT-crypted-5.exe’

First, Vawtrak resolves the GetProcessHeap and HeapAlloc
APIs using the API resolution algorithm discussed below.
This algorithm is also used to resolve the rest of the APIs
needed by the malware.

API resolution algorithm

The API resolution algorithm starts with a series of function
calls to locate the initial location of the PEB (Process
Environment Block). Once the PEB has been located,
Vawtrak parses every module name through the PEB’s
linked list structure. Each module name is hashed using a
simple mathematical calculation. Then, every computed
hash value is compared against the hard-coded hash value
(0xD56131B3) of ‘kernel32.dll’. Once the correct hash is
found, the ImageBase of kernel32.dll is derived from the
current structure of the PEB.

Next, the malware decrypts the name of the required API
using a rotating key string (0xFA A7 E9 F4 44 9C DF 43 5D
C8 FD) similar to the one used during the decryption of the
large data block (which will be discussed in the next section).

Then Vawtrak gets the ImageBase of the ntdll.dll library
using the same routine as was used to fi nd the ImageBase

of kernel32.dll; in this case the hard-coded hash value is
0xA6196EA7. The same routine is also used to fi nd the
address of the LdrGetProcedureAddress API (hash value
0xB110618C).

Finally, the LdrGetProcedureAddress API is used to
get the addresses of the APIs needed by Vawtrak (e.g.
GetProcessHeap and HeapAlloc).

Decrypting the large data block

Vawtrak allocates 200,192 (0x30E00) bytes of heap memory
using a combination of the GetProcessHeap and HeapAlloc
(which is similar to RtlAllocateHeap) APIs. It decrypts and
copies a large chunk of memory from the ‘.data’ section of
the malware.

The malware decrypts the aforementioned large block of data
using the key string ‘y>;=>u*SzvwnmWnj’ (0x79 3E 3B 3D
3E 75 2A 53 7A 76 77 6E 6D 57 6E 6A).

The decryption algorithm looks complicated as a result
of there being garbage code embedded within the routine.
However, on looking closely, one sees that the only relevant
computation is the ‘SUB EAX, EDX’ instruction. It simply
subtracts the key byte (taken from the rotating key) from the
encrypted byte. The rest of the instructions (the majority) are
irrelevant to the actual algorithm.

This decryption algorithm is similar to the one discussed
earlier for decrypting the API name. Figure 2 shows

Figure 2: Decryption algorithm, part of the encrypted block and part of the decrypted block in heap memory. Only the highlighted
instructions are relevant; the rest are garbage instructions.

VIRUS BULLETIN www.virusbtn.com

JANUARY 20154

the decryption algorithm with the relevant instructions
highlighted.

Decompressing the decrypted data

The decrypted data is now located in the heap memory, albeit
in a compressed form. In order to decompress it to its normal
state, the malware needs to call the RtlDecompressBuffer
API. This API is resolved using the same technique as
was used to resolve the LdrGetProcedureAddress API, as
explained previously.

After getting the address of the RtlDecompressBuffer API,
Vawtrak prepares the heap by calling the RtlAllocateHeap
API. This is followed by decompressing the decrypted
data using the RtlDecompressBuffer API with the
COMPRESSION_FORMAT_LZNT1 format.

Decompressing the data produces an executable fi le image
with the proper MZ/PE header, the sections, and the rest of
the complete unencrypted, unpacked executable.

Moving from heap to virtual memory

After the decompression, Vawtrak resolves the following
APIs using the same API resolution algorithm as used earlier:
LoadLibraryA, GetProcAddress, VirtualAlloc, VirtualProtect,
VirtualFree and UnmapViewOfFile.

Then, Vawtrak parses the PE header of the newly
decompressed executable fi le image to acquire the
SizeOfImage value. After that, it allocates a section of virtual
memory of this size by calling the VirtualAlloc API.

This is followed by using SizeOfRawData to compute the
size of each section of the executable fi le image. Then, the
malware copies the contents of each section into the newly
allocated virtual memory (at address 0x8a0000).

After carefully copying the decompressed executable fi le
image, byte by byte, section by section, adjusted using
SizeOfRawData to obtain the physical fi le size, a researcher
can dump it to a fi le.

Fixing the IAT

When a given application runs, the operating system is
responsible for fi lling the IAT (Import Address Table) with
the corresponding API addresses. However, if the binary fi le
is loaded without proper Import Address translation, the IAT
will contain RVAs (Relative Virtual Addresses) instead of the
actual API addresses, and any call that is executed to an RVA
will not work properly.

The malware’s executable fi le image that was just copied
to the virtual memory has an IAT that only contains RVAs.
Vawtrak fi lls the IAT with the actual API addresses by
performing the following routine:

Initially, the malware parses the PE header to locate the
import table. This is followed by loading the fi rst library that

is found, kernel32.dll, using the LoadLibraryA API. Then it
gets the address of each API using the GetProcAddress API
and saves them to the corresponding locations in the IAT.
Once all the kernel32-related APIs have been resolved, it
goes back to load the rest of the libraries and thus resolves all
the required APIs.

Overwriting ‘mainOUT-crypted-5.exe’

Once the IAT has been fi lled with the proper API addresses,
Vawtrak copies another 4,096 (0x1000) bytes of code to a
different section of allocated virtual memory (0x890000) and
transfers control to it.

Within the execution of the newly copied binaries,
the malware changes the protection of the ‘mainOUT-
crypted-5.exe’ module to PAGE_READWRITE using the
VirtualProtect API. Then it clears the memory by overwriting
the location at which ‘mainOUT-crypted-5.exe’ was stored
with zeros, effectively removing it from memory.

This is followed by copying the contents of the virtual
memory at 0x8a0000 to the original memory location of the
‘mainOUT-crypted-5.exe’ module. To recap: the content of
the memory at 0x8a0000 is the decompressed executable
image with properly fi lled IAT, that has just been generated.

After copying every byte from the virtual memory
(0x8a0000), the section characteristics of the newly copied
module are adjusted to take account of the new memory
location.

Finally, the malware transfers control to the newly created
module, which is the next layer of the malware.

LAYER 3 (THE THIRD DOLL)
In this section, we will look into the third layer (the third
‘doll’ in our nesting doll analogy) – an executable binary
produced from the second layer. The new executable binary
contains no protection at all. The execution of this module is
straightforward. Neither decryption nor hashing are used, and
there is no digging around in a garbage bin.

In the malware’s current state, we can easily get a dumped
copy of a complete executable binary fi le – but the malware
is not done yet: it still has to reveal the last layer of the
nesting doll.

Removing restrictions

Within the context of the third layer, Vawtrak’s fi rst order of
business is to remove software restrictions. These restrictions
can be set through the software restriction policies of the
operating system.

Some of these policies are accessed via the registry key
‘HKEY_LOCAL_MACHINE\SOFTWARE\Policies\
Microsoft\Windows\Safer\CodeIdentifi ers’.

 VIRUS BULLETIN www.virusbtn.com

JANUARY 2015 5

Using the RegSetValueExA API, the following subkeys are
set by Vawtrak:

1. DefaultLevel = 0x40000 (unrestricted). This allows an
administrator to defi ne exceptions.

2. TransparentEnabled = 1. This skips DLL checking.

3. PolicyScope = 0. This makes policies applicable to all
users.

After doing this, the malware deletes the key ‘HKEY_
LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\
Windows\Safer\CodeIdentifi ers\0\Paths\’, using the
SHDeleteKeyA API. This basically removes any restrictions
on any fi le under the ‘Path Rule’, which identifi es whether an
application is restricted or not.

Anti-anti-malware

After removing restrictions for any application, Vawtrak
tries to restrict possible execution of some anti-malware
applications using the routine described below.

Initially, it gets the %system% folder using the
GetSystemDirectoryA API to extract the drive name, such
as drive ‘C’. Then it adds the string ‘:\Program Files\’ to
the drive name. Finally, it adds the anti-malware software

name, resulting in the following string format: ‘[drivename]:\
Program Files\[anti-malware name]’ (e.g. ‘C:\Program
Files\[anti-malware name]’).

Vawtrak also looks into different folders by replacing the
string ‘:\Program Files\’ with either ‘:\Program Files (x86)\’
or ‘:\Documents and Settings\All Users\Application Data\’.

Vawtrak calls the GetFileAttributesA API to check if the
derived anti-malware’s pathname exists. If the pathname
exists, the malware will generate a hash value for it. Then it
will create the registry key ‘HKEY_LOCAL_MACHINE\
SOFTWARE\Policies\Microsoft\Windows\Safer\
CodeIdentifi ers\0\Paths\[hash value]’ with the subkeys
‘SaferFlags’ set to 0 and ‘ItemData’ set to the anti-malware’s
pathname.

This newly created key will restrict the privileges and
permissions of the given anti-malware application. It can also
restrict execution of any applications under a given pathname.

Vawtrak will try to restrict the permissions granted to any
anti-malware applications in its list.

Figure 3 shows a list of anti-malware names, the registry
entries, and the warning message that appears when
attempting to execute an application from a restricted folder.

Figure 3: A list of anti-malware names, the registry entries and the warning message displayed when attempting to execute an
application from a restricted folder.

VIRUS BULLETIN www.virusbtn.com

JANUARY 2015

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Consultant Technical Editors: Dr Morton Swimmer, Ian Whalley

© 2015 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

6

Generating the last doll

After restricting the execution of anti-malware applications,
the malware is ready to unwrap its fi nal component – the last
‘doll’.

First, Vawtrak accesses its resource section by calling the
FindResourceA API with an RT_RCDATA (raw data) type
parameter. This is followed by getting the size and the
handle of the only resource found for this module, using a
combination of the SizeofResource and LoadResource APIs.

After a new heap memory has been allocated using the
HeapCreate and RtlAllocateHeap APIs, the malware copies
184,258 (0x2cfc2) bytes of raw data resource to the heap
memory, byte by byte. Upon fi nishing this, the resource is set
free by calling the FreeResource API.

A marker (‘AP32’) at the beginning of the raw data is
checked to make sure that the right binaries are copied to
the heap memory. Another check is made by calculating the
hash of the whole raw data and comparing it to the value
0x24D2EDEA.

If these checks are successful, another block of heap memory
is allocated. Vawtrak decrypts the raw data and copies it
to the newly allocated heap. Another hash computation is
performed against the newly decrypted data and the resulting
hash is compared against the value 0x52194545.

The new heap now contains a new executable binary – the
last ‘doll’ – in the form of a dynamic link library (DLL) fi le.

A new fi le, with a random fi lename and an extension name of
‘dat’, is created in the %appdata% folder using a combination
of the SHGetFolderPathA and CreateFileW APIs. Afterwards,
Vawtrak copies the contents of the new heap memory to the
newly created fi le.

This is followed by creating an autostart registry entry,
‘[HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run]’ with value ‘[regsvr32.exe /s ‘C:\
Documents and Settings\All Users\Application\{random
fi lename}.dat’]’, using a combination of the RegCreateKeyA
and RegSetValueExW APIs. This makes sure that the
malware maintains persistence upon a restart.

Finally, to enable the current module to use the functions
exported by the dropped DLL fi le, Vawtrak loads it into
memory using a call to the LoadLibraryW API with
the parameter ‘C:\Documents and Settings\All Users\
Application\{random fi lename}.dat’.

The usage of the DLL fi le is not covered in this article. In
principle, any DLL fi le could be included.

CONCLUSION
Like a nesting doll, the fi rst executable binary (outer doll)
generates the second executable binary from its overlay

section; the second executable binary (second doll)
decompresses a big chunk of data to generate the third
executable binary; the third executable binary (third doll)
uses its resource section to generate the fi nal executable
binary (last doll).

Each ‘doll’ (executable binary) has its own set of algorithms
and functions that leads to the unwrapping of the next one.
Every binary (except for the last one) has an important role to
perform in generating the next one.

The ingenuity and skills shown by Vawtrak are not simple,
but concise. Do not be deceived by a nice picture. Be vigilant
and stay safe.

REFERENCES
[1] Leyden, J. Vawtrak challenges almighty ZeuS as

king of the botnets. The Register. December 2014.
http://www.theregister.co.uk/2014/12/27/vawtrak_
challenges_almighty_zeus_as_king_of_the_botnets/.

[2] Wyke, J. Vawtrak – International Crimeware as a
Service. Sophos. December 2014.
http://www.sophos.com/en-us/medialibrary/PDFs/
technical%20papers/sophos-vawtrak-international-
crimeware-as-a-service-tpna.pdf.

