
VIRUS BULLETIN   www.virusbtn.com 

1OCTOBER 2014

Covering the 
global threat landscape

THE HULK
Raul Alvarez
Fortinet, Canada

In most cases, infected fi les have an increased fi le size due 
to the nature of their infection: the infection process either 
results in the addition of a new section, or the expansion of 
the fi le’s own last section. Either way, the infected fi le is 
larger than the original. 

However, there is another group of fi le infectors known 
as ‘cavity fi le infectors’, which can infect fi les without 
increasing their size. We seldom see this kind of infector due 
to the complexity of their algorithms, or perhaps because they 
are more time consuming to create. 

In this article, we will look into how Win32/Huhk 
implements cavity infection.

CONTEXT #1: RUNNING WITHIN AN 
INFECTED FILE (NOT EXPLORER.EXE)
Huhk’s execution depends on the context in which it 
runs. If it is running within any infected fi le, other than 
explorer.exe, its only goal is to make sure that explorer.exe 
is infected. Both ‘%system%\dllcache\explorer.exe’ and 
‘%windows%\explorer.exe’ must be infected.

The following sub-sections describe what happens within this 
context.

Collecting bytes
When an application runs, the initial address of the SEH 
(Structured Exception Handling) chain points to a procedure 
in kernel32.dll. The malware makes use of this fact by 
subtracting 0x1000 from the initial address until it reaches 
the ImageBase of the kernel32 library.

Once the kernel32 library has been found, Huhk computes 
the hash of each API name in the kernel’s export table to 
search for ‘VirtualAlloc’ (0xA5171D00). (The hash algorithm 
only uses ‘ADC EDI,ECX’ and ‘ROL ECX,8’ instructions.) 
Then it computes the equivalent API address based on the 
index of the API name. 

This is followed by allocating a section of virtual memory, 
for byte collection, using the newly resolved VirtualAlloc 
API. 

The malware has a table of addresses and sizes. Let’s call it 
the ‘cavity table’. The addresses point to the malware bytes 
scattered throughout the infected module, while the sizes 
determine the number of malware bytes at a given address. 

To collect these bytes, the malware performs the following 
steps:

1. The fi rst address in the cavity table points to the 
unencrypted bytes of the malware. These bytes 
are copied to the newly allocated virtual memory 
without decryption, with the number of bytes copied 
determined by the fi rst size entry in the table.

2. The next address points to the encrypted malware 
bytes. The decryption algorithm is a simple 
XOR using a key taken from the fi rst byte of the 
TimeDateStamp value of the infected module. After 
a byte has been decrypted, it is copied to the virtual 
memory. 

 The malware bytes are decrypted and copied to the 
virtual memory, byte by byte, until the count reaches 
the given size value.

3. Step 2 is repeated for as long as the next address in 
the table is not zero. These variations depend on the 
available free spaces in any given host fi le. 

Once all malware bytes have been collected in virtual 
memory, Huhk transfers control to the newly copied code. 

Resolving APIs
Within the context of the new malware code in the newly 
allocated memory, Huhk resolves its APIs using a similar 
method to that discussed above. 

The API resolution algorithm is as follows:

1. In a given list, if the hash value is 0xFFFFFFFF, what 
follows will be a pointer to a library (DLL) name. The 
library is loaded using a call to the LoadLibraryA API.

  (The default library is kernel32 and the fi rst group of 
hash values belongs to it.)

2. If a hash value is for an API, Huhk will compute 
the hash value of each API name in the library’s 
export table to look for the equivalent hash value (see 
Figure 1).

3. It then gets the corresponding API address based on 
the index of the API name. 

Each hash value in the list (see Figure 1) passes through the 
above steps.

Restoring the original bytes 

After resolving all the required APIs, the malware restores 
the fi rst fi ve bytes at the infected module’s entry point. 

The routine that restores the original bytes is as follows:



VIRUS BULLETIN   www.virusbtn.com 

OCTOBER 20142

1. Initially, it changes the protection of the bytes 
to PAGE_EXECUTE_READWRITE using the 
VirtualProtect API.

2. This is followed by opening the current process 
using a combination of the GetCurrentProcessId and 
OpenProcess APIs. 

3. Finally, it writes the original bytes using the 
WriteProcessMemory API.

Using the same routine as described above, the malware 
restores another seven bytes of the infected module. These 
bytes are used to jump to the fi rst malware function (see the 
section ‘Collecting bytes’). 

Using the information from the cavity table, Huhk restores 
the memory locations at which the scattered pieces of 
malware are located. To quickly refi ll these locations, the 
malware allocates a section of virtual memory full of zeros 
using the VirtualAlloc API. Then, using the zeros and the 
routine above, the memory locations pointed to by the cavity 
table are restored.

Determining which context
After restoring the necessary bytes of the host fi le, Huhk 
checks if the current infected module is explorer.exe. If it is 
not, it will continue with the sequence of events described in 
the following sub-sections, otherwise it will perform a different 
sequence of events (as described in the section ‘Context #2’).

To continue running in this context, the malware gets 
the temp path folder using the GetTempPathW API, and 
checks whether ‘%temp%\lorer.exe’ exists using the 
GetFileAttributesW API. 

If ‘lorer.exe’ (derived from ‘explorer.exe’) exists, the 
malware will restore the original bytes of the current module 
and transfer control to it. Checking for the presence of 
‘%temp%\lorer.exe’ is another form of checking whether the 
system is already infected. 

Otherwise, the malware performs the following routine:

First, it tries to disable the Windows File Protection of 
‘%windows%\explorer.exe’. Then it moves ‘%windows%\
explorer.exe’ to ‘%temp%\lorer.exe’ using the MoveFileW 
API. This is followed by overwriting ‘%system%\dllcache\
explorer.exe’ with ‘%temp%\lorer.exe’ using the CopyFileW 
API with the bFailIfExists parameter set as FALSE.

Next, it gets the fi le attributes of ‘%system%\dllcache\
explorer.exe’ and saves them for later use. The new attributes 
are set to FILE_ATTRIBUTE_NORMAL using the 
SetFileAttributesW API. 

The fi le ‘%system%\dllcache\explorer.exe’ is opened with 
GENERIC_READ|GENERIC_WRITE access using the 
CreateFileW API. To make sure that it is a disk fi le, the 
malware calls the GetFileType API.

The fi le’s size and time stamp are also saved for later use, 
using the GetFileSize and GetFileTime APIs.

Figure 1: Partial table with hashes and the equivalent APIs.



  VIRUS BULLETIN   www.virusbtn.com 

OCTOBER 2014 3

Finally, the fi le ‘%system%\dllcache\explorer.exe’ is 
loaded into the memory, ready for reading and writing, 
using a combination of the CreateFileMappingW and 
MapViewOfFile APIs.

Infection routine
As we have observed so far, Huhk is polymorphic in nature. 
Besides being a cavity fi le infector, it can infect fi les with 
different binary versions of itself, making it harder to detect.

Although it uses a simple XOR algorithm for encryption and 
decryption, the generation of the key is a bit more interesting.

Generating the encryption key and the 
infection marker
The infection marker is used to avoid re-infection of host 
fi les, while the decryption key is used to expose the actual 
binary. It is rare for both of them to be located in the same 
place.

In checking for the infection marker, straight after the 
mapping of the cached version of explorer.exe, the 
malware gets the TimeDateStamp DWORD value from 
the PE header. If the sum of the fi rst and second bytes of 
the TimeDateStamp DWORD is 0xFF, the fi le is already 
infected. The malware then unmaps and closes ‘%system%\
dllcache\explorer.exe’ using the UnmapViewOfFile and 
CloseHandle APIs, and exits from this routine. 

If, on the other hand, ‘%system%\dllcache\explorer.exe’ is 
not yet infected, the malware will generate the encryption key 
and infection marker by performing the following routine:

Initially, the malware checks whether the fi le is a DLL. If it 
is, it skips the infection routine, unmaps explorer.exe, and 
exits from this routine.

Otherwise, it gets a new DWORD value by calling the 
GetTickCount API. It divides the DWORD by three, changes 
the second byte to 0xFF, subtracts the fi rst byte from the 
second byte, and replaces the second byte with the difference. 
The fi nal value of the DWORD now contains the infection 
marker (the sum of the fi rst and second bytes) and the 
encryption key (fi rst byte). It is saved to a memory location 
for later use.

Looking for free space
After generating the marker and the key, the malware 
traverses the content of the mapped explorer.exe, starting at 
the PE header. It looks for free spaces (memory locations 
fi lled with zeros) for its cavity infection. 

It checks each DWORD memory for 0x00000000. When 
a DWORD with 0x00000000 is found, it marks it as 
‘startingLocation’. Then, it looks for a non-zero DWORD 
and marks it as ‘endingLocation’. The size of the free space 

is determined by the difference between the ‘endingLocation’ 
and the ‘startingLocation’. 

If the size is equal to or greater than 0xFA, the malware will 
add it as an entry in a temporary table in stack memory. Each 
entry consists of an address pointing to a free space, and the 
size of the free space. This temporary table will serve as the 
cavity table in a successful infection.

The malware continues to search for every available space 
until it reaches the end of the mapped explorer.exe fi le. Every 
suitable free space will be referenced in the cavity table.

Once all available free spaces have been referenced, the 
malware sums up all the sizes in the table and checks whether 
the total is enough for the malware. The total size must be 
greater than 7,005 bytes (0x1B5D). 

Cavity infection
The fi rst block of code is important to the malware, so it 
looks for enough free space to place the initial code. It 
searches the cavity table for a size entry which is equal to or 
greater than 551 bytes (0x227), then moves that entry to the 
top of the table.

The infection begins by copying the malware code as is (no 
encryption) to the free space pointed to by the address at the 
top of the cavity table. 

Afterwards, the rest of the malware code is copied and 
scattered amongst the various free spaces referenced by the 
table (see Figure 2). Each and every byte is encrypted with a 
simple XOR using the key that was generated earlier. 

Finalizing the infection
After fi lling the free spaces of the mapped ‘%system%\
dllcache\explorer.exe’ fi le, the malware readjusts the 
addresses in the cavity table relative to the ImageBase of 
explorer.exe. Then it copies the cavity table from the stack 
memory to the mapped fi le.

This is followed by overwriting the fi rst fi ve bytes of the 
entry point of the mapped explorer.exe. These bytes are the 
initial call to the malware routine. 

The TimeDateStamp fi eld of explorer.exe’s PE header is 
also changed to the DWORD (encryption key and infection 
marker) that was generated previously.

Afterwards, Huhk generates the checksum value of the newly 
infected explorer.exe, using the ‘ADC DX,AX’ instruction. 
Each WORD value is computed, starting from the MZ 
header, and the fi nal WORD value is copied to the Checksum 
fi eld of explorer.exe’s PE header. The generated checksum is 
different for each infection due to the polymorphic nature of 
the malware.

To fl ush all the changes and modifi cations to the physical fi le 
of explorer.exe, the malware calls the UnmapViewOfFile API.



VIRUS BULLETIN   www.virusbtn.com 

OCTOBER 20144

Finally, Huhk restores the original time stamp and attributes 
of ‘%system%\dllcache\explorer.exe’ by calling the 
SetFileTime and SetFileAttributesW APIs.

Passing the infection
After the infection routine, Huhk tries to move the 
infected ‘%system%\dllcache\explorer.exe’ to 
‘%windows%\explorer.exe’, then it tries to copy 
‘%windows%\explorer.exe’ back to ‘%system%\dllcache\
explorer.exe’, using the MoveFileW and CopyFileW APIs, 
respectively. This is the malware’s attempt to make sure that 
both copies of ‘explorer.exe’ fi les are infected.

Hooking WS2_32.connect
For Huhk’s fi nal trick, it hooks the ‘connect’ API of 
WS2_32.DLL in memory, by changing the fi rst fi ve bytes of 
the API to a call to the malware’s code. The hook function for 
the connect API is discussed in the next section.

Hooking the connect API is only implemented in the 
infection of non-explorer executable fi les.

After hooking the connect API, the malware transfers 
execution to the host fi le.

Activating the connect API
The hook function, which is activated when the connect API is 
called, attempts to connect to ‘http://vampire00[--REMOVED-

-]info’ and ‘http://c34.statcoun[-REMOVED-]unter.php?sc_
project=3034266&java=0&[-REMOVED-]&invisible=0’, 
and tries to download another piece of malware. (For safety 
reasons, parts of the links have been removed.)

The URLs are the decrypted version of the hard-coded 
strings ‘cpqn9/0xdqumug107rt*stuw-iohr’ and ‘cpqn9/
0e683wwcucnskp`n+anm0erysxht/pgn<o^[mpnjfewA8466
365$g]q]:.%sfexvnx|?396/-.\b#gmvjulfqi@2’, respectively. 
At the time of writing this article, the links were no longer 
active.

CONTEXT #2: RUNNING IN THE CONTEXT 
OF EXPLORER.EXE
In this context, the malware goes through the same steps as 
described in the preceding sub-sections, until it reaches the 
point of determining in which context it is running.

Since it is running in the context of explorer.exe, the malware 
hooks the CreateProcessW API by activating Thread #1 (see 
below). Afterwards, it transfers control to Explorer’s main 
module. 

The malware now sits and waits for the hooked 
CreateProcessW API to be called.

Thread #1
This thread is responsible for installing the hook for the 
CreateProcessW API. 

Figure 2: A cavity-infected fi le using the free spaces. 



  VIRUS BULLETIN   www.virusbtn.com 

OCTOBER 2014

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Perl Developer: Tom Gracey

Consultant Technical Editors: Dr Morton Swimmer, Ian Whalley

© 2014 Virus Bulletin Ltd, The Pentagon, Abingdon Science 
Park, Abingdon, Oxfordshire OX14 3YP, England. 
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com 
Web: http://www.virusbtn.com/

5

When the thread is activated, it sleeps for 30,000ms, before 
waking up to place the hook to the CreateProcessW API 
using the following routine:

The malware changes the protection of the CreateProcessW 
API to PAGE_EXECUTE_READWRITE using the 
VirtualProtect API, opens the current process using a 
combination of the GetCurrentProcessId and OpenProcess 
APIs, then modifi es the fi rst fi ve bytes using a combination 
of the ReadProcessMemory and WriteProcessMemory APIs. 
The fi rst fi ve bytes are now a call to the hook function.

After setting the hook, the thread terminates.

Activating the CreateProcessW API

The hook function is triggered when the hooked 
CreateProcessW API is called. 

Initially, Huhk restores the original bytes of the 
CreateProcessW API, using a routine similar to that used in 
Thread #1. The only difference is that it restores the original 
bytes of the API instead of hooking it.

This is followed by extracting the folder names from 
the pathname of the application, taken from one of the 
parameters from the CreateProcessW API when it was 
triggered. The folder names are converted to lower case and 
the malware checks whether any of the following strings 
are present: ‘windows’, ‘winnt’, ‘system32’, ‘system’ and 
‘dllcache’.

Every folder name is extracted from the pathname, and if 
any of them match any of the aforementioned strings, the 
malware will skip other checks, re-hook the CreateProcessW 
API by activating Thread #1, and exit the current function.

If the folder names pass the checks, the fi lename is also 
checked against the strings shown in Figure 3. If any of the 
strings match the fi lename, it will re-hook the API and exit. 
The strings resemble the fi lenames of some anti-malware and 
security applications. 

If, on the other hand, both the folder names and fi lenames 
pass the checks, the malware will perform the infection 
routine, which is similar to the infection of ‘%system%\
dllcache\explorer.exe’. Once the infection is fi nished, it will 

activate Thread #1 to re-hook the CreateProcessW API and 
exit the function.

WRAP UP
In the case of this piece of malware, explorer.exe is always 
infected, while the infection of other executable fi les 
only happens if the malware runs in the context of the 
aforementioned critical fi le.

Due to its infection criteria, the malware only infects 
a handful of executable fi les. In this regard, it has 
unintentionally created a stealth technique. 

In addition to its polymorphic nature, Huhk’s cavity infection 
technique and the small number of infected fi les help it to 
avoid detection. 

Figure 3: Folder names and fi lenames to avoid.


