
4 • VIRUS BULLETIN MAY 2002

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Striking Similarities
Frédéric Perriot, Peter Ferrie and Péter Ször
Symantec Security Response, USA

W32/Simile is the latest ‘product’ of the developments in
metamorphic virus code. The virus was released in the most
recent 29A #6 issue in early March 2002.

The virus was written by the virus writer who calls himself
‘The Mental Driller’. Some of his previous viruses, such as
W95/Drill (which used the Tuareg polymorphic engine),
have proved very challenging to detect.

W32/Simile moves yet another step up the scale of com-
plexity. The source code of the virus is approximately
14,000 lines of assembly code. About 90% of the virus code
is taken up by the metamorphic engine itself, which is
extremely powerful.

The virus was named ‘MetaPHOR’ by its author, which
stands for ‘Metamorphic Permutating High-Obfuscating
Reassembler’.

The first generation virus code is about 32 KB and there are
three known variants of the virus in circulation. Samples
of the original variant which was released in the 29A
issue have been received by certain anti-virus companies
from some major corporations in Spain, indicating a
minor outbreak.

W32/Simile is highly obfuscated and challenging to
understand. The virus attacks disassembling, debugging and
emulation techniques, as well as standard evaluation-based
techniques for virus analysis. In common with many other
complex viruses, Simile uses EPO techniques.

Replication Routine

Simile contains a fairly basic direct action replication
mechanism that attacks PE files on the local machine and
the network. The emphasis is clearly on the metamorphic
engine, which is unusually complex.

EPO Mechanism

The virus searches and replaces all of the possible patterns
of certain call instructions (those that reference
ExitProcess() API calls) to point to the beginning of
the virus code. Thus the main entry point of the file is
not altered.

Sometimes the metamorphic virus body is placed together
with a polymorphic decryptor at the same location within
the file. In other cases the polymorphic decryptor is placed
at the end of the code section, while the virus body is

placed in another section. This is to conceal further the
location of the virus body.

Polymorphic Decryptor

During the execution of an infected program, when the
instruction flow reaches one of the hooks that the virus has
placed in the code section, control is transferred to a
polymorphic decryptor which is responsible for decoding
the virus body (or simply copying it directly since, inten-
tionally, the virus body is not always encrypted.)

This decryptor, whose location in the file is variable,
allocates a large chunk of memory (about 3.5 megabytes)
then proceeds to decipher the encrypted body into it. It does
this in a most unusual manner: rather than going through
the encrypted data linearly, it processes it in a seemingly
random order, thus managing to avoid triggering some
decryption-loop recognition heuristics.

This ‘Pseudo-Random Index Decryption’, as the virus
writer calls it, relies on the use of a family of functions that
have interesting arithmetic properties, modulo 2^n.

While the virus writer discovered this by a process of trial
and error, it is possible to produce a mathematical proof
that his algorithm works in all cases (provided the imple-
mentation is correct, of course). Such a proof is beyond the
scope of this article but the proof, by Frédéric Perriot, is
available at http://www.peterszor.com/.

The size and appearance of the decryptor varies greatly
from one virus sample to the next. To achieve this high
level of variability, the virus writer simply generates a code
template and then puts his metamorphic engine to work to
transform the template into a working decryptor!

In some cases, the decryptor may start with a header whose
intent is not immediately obvious upon reading it. Further
study reveals that its purpose is to generate anti-emulation
code on the fly: the virus constructs a small oligomorphic
code snippet containing the instruction RDTSC (‘ReaD
Time Stamp Counter’). This retrieves the current value of
an internal processor ticks counter. Then, based on one
random bit of this value, the decryptor either decodes and
executes the virus body or bypasses the decryption logic
altogether and simply exits.

Besides confusing emulators that do not support the
somewhat peculiar RDTSC instruction (one of The Mental
Driller’s favourites, which he used previously in
W95/Drill), this is also a very strong attack against all
algorithms that rely on emulation either to decrypt the virus
body or to determine viral behaviour heuristically. Effec-
tively, it causes some virus samples to cease infecting
completely upon a random time condition.

VIRUS ANALYSIS

VIRUS BULLETIN MAY 2002 • 5

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

On initial execution, the virus body will retrieve the
addresses of 20 APIs that it requires for replication and for
displaying the payload.

Next the virus will check the system date in order to
determine whether either of its payloads should activate.
Both payloads require that the host imports functions
from User32.dll. In this case, the virus checks whether
it should call the payload routine or not (which is
explained below).

Metamorphism

After the payload check has completed, a new virus body is
generated. This code generation is carried out in a number
of steps:

The first step is to disassemble the viral code into an
intermediate form, which is independent of the CPU upon
which the native code will execute. This allows for future
extensions, such as producing code for different operating
systems or even different CPUs.

The second step is to shrink the intermediate form, by
removing the redundant and unused instructions. These
instructions were added by earlier replications to interfere
with disassembly by virus researchers.

The third step is to permutate the intermediate form, for
example reordering subroutines, or separating blocks of
code and linking them with jump instructions.

The fourth step is to expand the code, by adding redundant
and unused instructions.

The fifth step is to reassemble the intermediate form into a
final native form that will be added to infected files.

Thus Simile can not only expand, as most first generation
metamorphic viruses do, but it can also shrink (and shrink
to different forms!).

Replication

Next the replication phase begins. It starts by searching for
*.exe in the current directory, then on all fixed and mapped
network drives.

The infection will scan recursively into directories, but only
to a depth of three subdirectories, and avoiding completely
any directory that begins with the letter ‘W’.

For each file that is found, there is a 50% chance that it will
be skipped explicitly. Additionally, files will be skipped if
they begin with ‘F-’, ‘PA’, ‘SC’, ‘DR’, ‘NO’, or contain the
letter ‘V’ anywhere in the name.

Due to the nature of the comparison, other character
combinations are skipped unintentionally, for example any
directory that begins with the number 7, any file that begins
with ‘FM’, or any file that contains the number 6 anywhere
in its name.

The file infection routine contains many checks to filter
files that cannot be infected safely. For example, the file
must contain a checksum, it must be an executable for the
Intel 386+ platform, and there must exist sections whose
names are ‘.text’ or ‘CODE’, and ‘.data’ or ‘DATA’. The
virus also checks that the host imports some kernel func-
tions, such as ‘ExitProcess’.

For any file that is considered infectable, random factors
and the file structure will determine where the virus places
its decryptor and virus body.

If the file contains no relocations, or with only a small
chance, the virus body will be appended to the last section
in the file. In this case, the decryptor will be placed either
immediately before the virus body, or at the end of the
code section.

Otherwise, if the name of the last section is ‘.reloc’, the
virus will insert itself at the beginning of the data section
and move all of the following data and update all of the
offsets in the file.

Payload

The first payload activates only during the months of
March, June, September, and December. Variants A and B
of W32/Simile display their message on the 17th day of
these months. Variant C will display its message on the 18th
day of these months.

Variant A will display the message ‘Metaphor v1 by
The Mental Driller/29A’:

and variant B will display ‘Metaphor 1b by The Mental
Driller/29A’:

Variant C attempts to display ‘Deutsche Telekom by Energy
2002 **g**’:

6 • VIRUS BULLETIN MAY 2002

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

However the author of variant C had little understanding
of the code, and the message rarely appears correctly. In
all variants, the message appears in randomly mixed
letter cases.

The second payload activates on 14 May in variants A and
B, and on 14 July in variant C.

In the second payload, variants A and B will display the
message ‘Free Palestine!’ on computers that use the Hebrew
locale. Variant C attempts to display the text ‘Heavy Good
Code!’ but, due to a bug in the virus code, this message is
displayed only on systems on which the locale cannot
be determined.

Conclusion

During the extensive and detailed tests carried out with
W32/Simile replication on test systems we have noticed
that the virus code generates garbage unintentionally or
trashes some files accidentally as the direct result of its
extreme complexity.

It seems that obfuscated code is not only challenging for
virus researchers to analyse, but it is very challenging
for the author of the code to debug.

As the saying goes: ‘there are three kinds of lies: lies, damn
lies, and statistics’. The complex infection mechanism
coupled with the powerful metamorphic engine make it
very difficult to reach 100% accuracy using only empirical
evaluation methods, and indepth analysis of the virus code
is essential.

Exact identification becomes a problem even for humans.
How long does it take to be sure if something is really
variant A or C or a new one? Is it modified or is it the
same? It is becoming more difficult to know. The need to
understand metamorphic code in a quicker fashion must be
the subject of further research.

As this issue of VB goes to print, W32/Simile (aka
W32/Etap) appears on the preliminary April 2002 supple-
mental WildList.

W32/Simile

Alias: W32.Etap, Metaphor.

Type: Direct action Win32, portable
executable infector, complete
metamorphic virus.

Removal: Detect and delete infected files and
replace them from clean backups.

Payload: Displays messages on certain dates.

Unintended
payload: Trashes some portable executable

files.

